Father of the Soviet atomic bomb. Manhattan Hoax - Who first created the atomic bomb? First use of the atomic bomb date

“I’m not the simplest person,” he once remarked American physicist Isidore Isaac Rabi. “But compared to Oppenheimer, I am very, very simple.” Robert Oppenheimer was one of the central figures of the twentieth century, whose very “complexity” absorbed the political and ethical contradictions of the country.

During World War II, the brilliant physicist Azulius Robert Oppenheimer led the development of American nuclear scientists to create the first atomic bomb. The scientist led a solitary and closed image life, and this gave rise to suspicions of treason.

Atomic weapons are the result of all previous developments of science and technology. Discoveries that are directly related to its emergence were made at the end of the 19th century. The research of A. Becquerel, Pierre Curie and Marie Sklodowska-Curie, E. Rutherford and others played a huge role in revealing the secrets of the atom.

At the beginning of 1939, the French physicist Joliot-Curie concluded that a chain reaction was possible that would lead to an explosion of monstrous destructive force and that uranium could become a source of energy, like an ordinary explosive. This conclusion became the impetus for developments to create nuclear weapons.

Europe was on the eve of World War II, and the potential possession of such a powerful weapon pushed militaristic circles to quickly create it, but the problem of having a large amount of uranium ore for large-scale research was a brake. Physicists from Germany, England, the USA, and Japan worked on the creation of atomic weapons, realizing that without a sufficient amount of uranium ore it was impossible to carry out work, the USA purchased a large number of the required ore according to false documents from Belgium, which allowed them to carry out work on the creation of nuclear weapons in full swing.

From 1939 to 1945, more than two billion dollars were spent on the Manhattan Project. A huge uranium purification plant was built in Oak Ridge, Tennessee. H.C. Urey and Ernest O. Lawrence (inventor of the cyclotron) proposed a purification method based on the principle of gas diffusion followed by magnetic separation of the two isotopes. A gas centrifuge separated the light Uranium-235 from the heavier Uranium-238.

On the territory of the United States, in Los Alamos, in the desert expanses of New Mexico, the American nuclear center. Many scientists worked on the project, but the main one was Robert Oppenheimer. Under his leadership, the best minds of that time were gathered not only in the USA and England, but in almost all of Western Europe. A huge team worked on the creation of nuclear weapons, including 12 laureates Nobel Prize. Work in Los Alamos, where the laboratory was located, did not stop for a minute. In Europe, meanwhile, the Second World War, and Germany carried out massive bombings of English cities, which endangered the English atomic project “Tub Alloys”, and England voluntarily transferred its developments and leading scientists of the project to the United States, which allowed the United States to take a leading position in the development of nuclear physics (the creation of nuclear weapons).

“The Father of the Atomic Bomb,” he was at the same time an ardent opponent of American nuclear policy. Bearing the title of one of the most outstanding physicists of his time, he enjoyed studying the mysticism of ancient Indian books. Communist, traveler and staunch American patriot, very spiritual person, he was nevertheless willing to betray his friends in order to protect himself from attacks by anti-communists. The scientist who developed the plan to cause the greatest damage to Hiroshima and Nagasaki cursed himself for the “innocent blood on his hands.”

Writing about this controversial man is not an easy task, but it is an interesting one, and the twentieth century is marked by a number of books about him. However, the scientist’s rich life continues to attract biographers.

Oppenheimer was born in New York in 1903 into a family of wealthy and educated Jews. Oppenheimer was brought up in a love of painting, music, and in an atmosphere of intellectual curiosity. In 1922, he entered Harvard University and graduated with honors in just three years, his main subject being chemistry. Over the next few years, the precocious young man traveled to several European countries, where he worked with physicists who were studying the problems of studying atomic phenomena in the light of new theories. Just a year after graduating from university, Oppenheimer published scientific work, which showed how deeply he understands new methods. Soon he, together with the famous Max Born, developed the most important part of quantum theory, known as the Born-Oppenheimer method. In 1927, his outstanding doctoral dissertation brought him worldwide fame.

In 1928 he worked at the Universities of Zurich and Leiden. The same year he returned to the USA. From 1929 to 1947 Oppenheimer taught at University of California and California Institute of Technology. From 1939 to 1945, he actively participated in the work on creating an atomic bomb as part of the Manhattan Project; heading the Los Alamos laboratory specially created for this purpose.

In 1929, Oppenheimer, a rising scientific star, accepted offers from two of several universities vying for the right to invite him. He taught the spring semester at the vibrant, young California Institute of Technology in Pasadena, and the fall and winter semesters at the University of California, Berkeley, where he became the first professor of quantum mechanics. In fact, the polymath had to adjust for some time, gradually reducing the level of discussion to the capabilities of his students. In 1936, he fell in love with Jean Tatlock, a restless and moody young woman whose passionate idealism found outlet in communist activism. Like many thoughtful people of the time, Oppenheimer explored the ideas of the left as a possible alternative, although he did not join the Communist Party, as his younger brother, sister-in-law and many of his friends did. His interest in politics, like his ability to read Sanskrit, was a natural result of his constant pursuit of knowledge. In his own words, he was also deeply alarmed by the explosion of anti-Semitism in fascist Germany and Spain and invested $1,000 a year out of his $15,000 annual salary in projects related to the activities of communist groups. After meeting Kitty Harrison, who became his wife in 1940, Oppenheimer broke up with Jean Tatlock and moved away from her circle of left-wing friends.

In 1939, the United States learned that in preparation for global war Hitler's Germany discovered the fission of the atomic nucleus. Oppenheimer and other scientists immediately realized that the German physicists would try to create a controlled chain reaction that could be the key to creating a weapon far more destructive than any that existed at that time. Enlisting the help of the great scientific genius, Albert Einstein, concerned scientists warned President Franklin D. Roosevelt of the danger in a famous letter. In authorizing funding for projects aimed at creating untested weapons, the president acted in strict secrecy. Ironically, many of the world's leading scientists, forced to flee their homeland, worked together with American scientists in laboratories scattered throughout the country. One part of the university groups explored the possibility of creating a nuclear reactor, others took up the problem of separating uranium isotopes necessary to release energy in a chain reaction. Oppenheimer, who had previously been busy with theoretical problems, was offered to organize a wide range of work only at the beginning of 1942.

The US Army's atomic bomb program was codenamed Project Manhattan and was led by 46-year-old Colonel Leslie R. Groves, a career military officer. Groves, who characterized the scientists working on the atomic bomb as "an expensive bunch of nuts," however, acknowledged that Oppenheimer had a hitherto untapped ability to control his fellow debaters when the atmosphere became tense. The physicist proposed that all the scientists be brought together in one laboratory in the quiet provincial town of Los Alamos, New Mexico, in an area he knew well. By March 1943, the boarding school for boys had been turned into a strictly guarded secret center, with Oppenheimer becoming its scientific director. By insisting on the free exchange of information between scientists, who were strictly forbidden to leave the center, Oppenheimer created an atmosphere of trust and mutual respect, which contributed to the amazing success of his work. Without sparing himself, he remained the head of all areas of this complex project, although his personal life suffered greatly from this. But for a mixed group of scientists - among whom there were more than a dozen then or future Nobel laureates and of whom it was a rare person who did not have a pronounced individuality - Oppenheimer was an unusually dedicated leader and a subtle diplomat. Most of them would agree that the lion's share of the credit for the project's ultimate success belongs to him. By December 30, 1944, Groves, who had by then become a general, could say with confidence that the two billion dollars spent would produce a bomb ready for action by August 1 of the following year. But when Germany admitted defeat in May 1945, many of the researchers working at Los Alamos began to think about using new weapons. After all, Japan would probably have soon capitulated even without the atomic bombing. Should the United States become the first country in the world to use such a terrible device? Harry S. Truman, who became president after Roosevelt's death, appointed a committee to study possible consequences use of the atomic bomb, which included Oppenheimer. Experts decided to recommend dropping an atomic bomb without warning on a large Japanese military installation. Oppenheimer's consent was also obtained.

All these worries would, of course, be moot if the bomb had not gone off. The world's first atomic bomb was tested on July 16, 1945, approximately 80 kilometers from the air force base in Alamogordo, New Mexico. The device being tested, named "Fat Man" for its convex shape, was attached to a steel tower installed in a desert area. Exactly at 5.30 am the detonator with remote control detonated the bomb. With an echoing roar, a giant purple-green-orange rocket shot into the sky in an area 1.6 kilometers in diameter. fire ball. The earth shook from the explosion, the tower disappeared. Rapidly rose to the sky white post smoke and began to gradually expand, taking on the terrifying shape of a mushroom at an altitude of about 11 kilometers. The first nuclear explosion shocked scientific and military observers near the test site and turned their heads. But Oppenheimer remembered the lines from the Indian epic poem "Bhagavad Gita": "I will become Death, the destroyer of worlds." Until the end of his life, satisfaction from scientific success was always mixed with a sense of responsibility for the consequences.

On the morning of August 6, 1945, there was a clear, cloudless sky over Hiroshima. As before, approaching from the east of two American aircraft(one of them was called Enola Gay) at an altitude of 10-13 km did not cause alarm (since every day they appeared in the sky of Hiroshima). One of the planes dived and dropped something, and then both planes turned and flew away. The dropped object slowly descended by parachute and suddenly exploded at an altitude of 600 m above the ground. It was the Baby bomb.

Three days after "Little Boy" was detonated in Hiroshima, a replica of the first "Fat Man" was dropped on the city of Nagasaki. On August 15, Japan, whose resolve was finally broken by these new weapons, signed an unconditional surrender. However, the voices of skeptics had already begun to be heard, and Oppenheimer himself predicted two months after Hiroshima that “mankind will curse the names Los Alamos and Hiroshima.”

The whole world was shocked by the explosions in Hiroshima and Nagasaki. Tellingly, Oppenheimer managed to combine his worries about testing a bomb on civilians and the joy that the weapon had finally been tested.

Nevertheless, the following year he accepted an appointment as chairman of the scientific council of the Commission for atomic energy(KAE), thereby becoming the most influential adviser to the government and military on nuclear issues. While the West and the Soviet Union led by Stalin were seriously preparing for cold war, each side focused its attention on the arms race. Although many of the scientists who were part of the Manhattan Project did not support the idea of ​​​​creating new weapons, former employees Oppenheimer Edward Teller and Ernest Lawrence believed that National security USA demands speedy development hydrogen bomb. Oppenheimer was horrified. From his point of view, the two nuclear powers were already confronting each other, like “two scorpions in a jar, each capable of killing the other, but only at the risk of his own life.” With the proliferation of new weapons, wars would no longer have winners and losers - only victims. And the “father of the atomic bomb” made a public statement that he was against the development of the hydrogen bomb. Always feeling out of place under Oppenheimer and clearly envious of his achievements, Teller began to make efforts to lead new project, implying that Oppenheimer should no longer be involved in the work. He told FBI investigators that his rival was using his authority to keep scientists from working on the hydrogen bomb, and revealed the secret that Oppenheimer suffered from bouts of severe depression in his youth. When President Truman agreed to fund the hydrogen bomb in 1950, Teller could celebrate victory.

In 1954, Oppenheimer's enemies launched a campaign to remove him from power, which they succeeded after a month-long search for "black spots" in his personal biography. As a result, a show case was organized in which many influential political and scientific figures spoke out against Oppenheimer. As Albert Einstein later put it: “Oppenheimer’s problem was that he loved a woman who didn’t love him: the US government.”

By allowing Oppenheimer's talent to flourish, America doomed him to destruction.


Oppenheimer is known not only as the creator of the American atomic bomb. He owns many works on quantum mechanics, theory of relativity, particle physics, theoretical astrophysics. In 1927 he developed the theory of interaction of free electrons with atoms. Together with Born, he created the theory of the structure of diatomic molecules. In 1931, he and P. Ehrenfest formulated a theorem, the application of which to the nitrogen nucleus showed that the proton-electron hypothesis of the structure of nuclei leads to a number of contradictions with the known properties of nitrogen. Investigated the internal conversion of g-rays. In 1937 he developed the cascade theory of cosmic showers, in 1938 he made the first calculation of a neutron star model, and in 1939 he predicted the existence of “black holes”.

Oppenheimer owns a number of popular books, including Science and the Common Understanding (1954), The Open Mind (1955), Some Reflections on Science and Culture (1960) . Oppenheimer died in Princeton on February 18, 1967.

Work on nuclear projects in the USSR and the USA began simultaneously. In August 1942, the secret “Laboratory No. 2” began working in one of the buildings in the courtyard of Kazan University. Igor Kurchatov was appointed its leader.

IN Soviet times it was argued that the USSR solved its atomic problem completely independently, and Kurchatov was considered the “father” of the domestic atomic bomb. Although there were rumors about some secrets stolen from the Americans. And only in the 90s, 50 years later, one of the main characters then, Yuli Khariton, spoke about the significant role of intelligence in accelerating the lagging behind. Soviet project. And American scientific and technical results were obtained by Klaus Fuchs, who arrived in the English group.

Information from abroad helped the country's leadership make a difficult decision - to begin work on nuclear weapons during a difficult war. The reconnaissance allowed our physicists to save time and helped to avoid a “misfire” during the first atomic test, which had enormous political significance.

In 1939, a chain reaction of fission of uranium-235 nuclei was discovered, accompanied by the release of colossal energy. Soon after, from the pages scientific journals Articles on nuclear physics began to disappear. This could indicate the real prospect of creating an atomic explosive and weapons based on it.

After the discovery by Soviet physicists of the spontaneous fission of uranium-235 nuclei and the determination of the critical mass, the residency was initiated by the head of the scientific and technological revolution

A corresponding directive was sent to L. Kvasnikova.

In the Russian FSB (formerly the KGB of the USSR), 17 volumes of archival file No. 13676, which document who and how recruited US citizens to work for Soviet intelligence, are buried under the heading “keep forever.” Only a few of the top leadership of the USSR KGB had access to the materials of this case, the secrecy of which was only recently lifted. Soviet intelligence received the first information about the work on creating an American atomic bomb in the fall of 1941. And already in March 1942, extensive information about the research ongoing in the USA and England fell on I.V. Stalin’s desk. According to Yu. B. Khariton, in that dramatic period it was safer to use the bomb design already tested by the Americans for our first explosion. “Taking into account state interests, any other solution was then unacceptable. The merit of Fuchs and our other assistants abroad is undoubted. However, we implemented the American scheme during the first test not so much for technical, but for political reasons.

The message that the Soviet Union had mastered the secret of nuclear weapons caused the US ruling circles to want to start a preventive war as quickly as possible. The Troian plan was developed, which envisaged starting fighting January 1, 1950. At that time, the United States had 840 strategic bombers in combat units, 1,350 in reserve, and over 300 atomic bombs.

A test site was built in the area of ​​Semipalatinsk. Exactly at 7.00 am on August 29, 1949, the first Soviet bomb was blown up at this training ground. nuclear device under the code name "RDS-1".

The Troyan plan, according to which atomic bombs were to be dropped on 70 cities of the USSR, was thwarted due to the threat of a retaliatory strike. The event that took place at the Semipalatinsk test site informed the world about the creation of nuclear weapons in the USSR.

Foreign intelligence not only attracted the attention of the country's leadership to the problem of creating atomic weapons in the West and thereby initiated similar work in our country. Thanks to foreign intelligence information, as recognized by academicians A. Aleksandrov, Yu. Khariton and others, I. Kurchatov did not make big mistakes, we managed to avoid dead-end directions in the creation of atomic weapons and create an atomic bomb in the USSR in a shorter time, in just three years , while the United States spent four years on this, spending five billion dollars on its creation.

As academician Yu. Khariton noted in an interview with the Izvestia newspaper on December 8, 1992, the first Soviet atomic charge was manufactured according to the American model with the help of information received from K. Fuchs. According to the academician, when government awards were presented to participants in the Soviet atomic project, Stalin, satisfied that there was no American monopoly in this area, remarked: “If we had been one to a year and a half late, we would probably have tried this charge on ourselves.” ".

The first Soviet charge for an atomic bomb was successfully tested at the Semipalatinsk test site (Kazakhstan).

This event was preceded by long and difficult work by physicists. The beginning of work on nuclear fission in the USSR can be considered the 1920s. Since the 1930s, nuclear physics has become one of the main directions of domestic physical science, and in October 1940, for the first time in the USSR, a group of Soviet scientists made a proposal to use atomic energy for weapons purposes, submitting an application to the Invention Department of the Red Army "On the use of uranium as a explosive and toxic substances."

The war that began in June 1941 and the evacuation of scientific institutes dealing with problems of nuclear physics interrupted work on the creation of atomic weapons in the country. But already in the autumn of 1941, the USSR began to receive intelligence information about secret intensive research work being carried out in Great Britain and the USA aimed at developing methods for using atomic energy for military purposes and creating explosives of enormous destructive power.

This information forced, despite the war, to resume work on uranium in the USSR. On September 28, 1942, a secret decree was signed State Committee Defense No. 2352ss "On the organization of work on uranium", according to which research on the use of atomic energy was resumed.

In February 1943, Igor Kurchatov was appointed scientific director of work on the atomic problem. In Moscow, headed by Kurchatov, Laboratory No. 2 of the USSR Academy of Sciences was created (now the National Research Center Kurchatov Institute), which began to study atomic energy.

Initially, the general management of the atomic problem was carried out by the Deputy Chairman of the State Defense Committee (GKO) of the USSR, Vyacheslav Molotov. But on August 20, 1945 (a few days after the US atomic bombing of Japanese cities), the State Defense Committee decided to create a Special Committee, headed by Lavrentiy Beria. He became the curator of the Soviet atomic project.

At the same time, for the direct management of research, design, engineering organizations and industrial enterprises, engaged in the Soviet nuclear project, the First Main Directorate was created under the Council of People's Commissars of the USSR (later the Ministry of Medium Engineering of the USSR, now the State Atomic Energy Corporation Rosatom). Boris Vannikov, who had previously been the People's Commissar of Ammunition, became the head of the PGU.

In April 1946, the design bureau KB-11 (now the Russian Federal Nuclear Center - VNIIEF) was created at Laboratory No. 2 - one of the most secret enterprises for the development of domestic nuclear weapons, the chief designer of which was Yuli Khariton. Plant No. 550 of the People's Commissariat of Ammunition, which produced artillery shell casings, was chosen as the base for the deployment of KB-11.

The top-secret facility was located 75 kilometers from the city of Arzamas (Gorky region, now Nizhny Novgorod Region) on the territory of the former Sarov Monastery.

KB-11 was tasked with creating an atomic bomb in two versions. In the first of them, the working substance should be plutonium, in the second - uranium-235. In mid-1948, work on the uranium option was stopped due to its relatively low efficiency compared to the cost of nuclear materials.

The first domestic atomic bomb had the official designation RDS-1. It was deciphered in different ways: “Russia does it itself,” “The Motherland gives it to Stalin,” etc. But in the official decree of the USSR Council of Ministers of June 21, 1946, it was encrypted as “Special jet engine (“S”).

The creation of the first Soviet atomic bomb RDS-1 was carried out taking into account the available materials according to the scheme of the US plutonium bomb tested in 1945. These materials were provided by Soviet foreign intelligence. An important source of information was Klaus Fuchs, a German physicist who participated in work on the nuclear programs of the USA and Great Britain.

Intelligence materials on the American plutonium charge for an atomic bomb made it possible to reduce the time needed to create the first Soviet charge, although many of the technical solutions of the American prototype were not the best. Even at the initial stages, Soviet specialists could offer the best solutions for both the charge as a whole and its individual components. Therefore, the first atomic bomb charge tested by the USSR was more primitive and less effective than the original version of the charge proposed by Soviet scientists in early 1949. But in order to reliably and quickly demonstrate that the USSR also possesses atomic weapons, it was decided to use a charge created according to the American design in the first test.

The charge for the RDS-1 atomic bomb was a multilayer structure in which the active substance, plutonium, was transferred to a supercritical state by compressing it through a converging spherical detonation wave in the explosive.

RDS-1 was an aircraft atomic bomb weighing 4.7 tons, with a diameter of 1.5 meters and a length of 3.3 meters. It was developed in relation to the Tu-4 aircraft, the bomb bay of which allowed the placement of a “product” with a diameter of no more than 1.5 meters. Plutonium was used as fissile material in the bomb.

To produce an atomic bomb charge in the city of Chelyabinsk-40 at Southern Urals a plant was built under the conditional number 817 (now the Federal State Unitary Enterprise Mayak Production Association). The plant consisted of the first Soviet industrial reactor for producing plutonium, a radiochemical plant for separating plutonium from uranium irradiated in the reactor, and a plant for producing products from metallic plutonium.

The reactor at Plant 817 was brought to its design capacity in June 1948, and a year later the plant received the required amount of plutonium to make the first charge for an atomic bomb.

The site for the test site where it was planned to test the charge was chosen in the Irtysh steppe, approximately 170 kilometers west of Semipalatinsk in Kazakhstan. A plain with a diameter of approximately 20 kilometers, surrounded from the south, west and north by low mountains, was allocated for the test site. In the east of this space there were small hills.

Construction of the training ground, called training ground No. 2 of the USSR Ministry of Armed Forces (later the USSR Ministry of Defense), began in 1947, and was largely completed by July 1949.

For testing at the test site, an experimental site with a diameter of 10 kilometers was prepared, divided into sectors. It was equipped with special facilities to ensure testing, observation and recording of physical research. In the center of the experimental field, a metal lattice tower 37.5 meters high was mounted, designed to install the RDS-1 charge. At a distance of one kilometer from the center, an underground building was built for equipment recording light, neutron and gamma fluxes nuclear explosion. To study the impact of a nuclear explosion, sections of metro tunnels, fragments of airfield runways, and samples of aircraft, tanks, and artillery were placed on the experimental field. rocket launchers, ship superstructures various types. To ensure the operation of the physical sector, 44 structures were built at the test site and a cable network with a length of 560 kilometers was laid.

In June-July 1949, two groups of KB-11 workers with auxiliary equipment and household supplies were sent to the test site, and on July 24 a group of specialists arrived there, which was supposed to be directly involved in preparing the atomic bomb for testing.

On August 5, 1949, the government commission for testing the RDS-1 gave a conclusion that the test site was completely ready.

On August 21, a plutonium charge and four neutron fuses were delivered to the test site by a special train, one of which was to be used to detonate a warhead.

On August 24, 1949, Kurchatov arrived at the training ground. By August 26, all preparatory work at the site was completed. The head of the experiment, Kurchatov, gave the order to test the RDS-1 on August 29 at eight o'clock in the morning local time and to carry out preparatory operations starting at eight o'clock in the morning on August 27.

On the morning of August 27, assembly of the combat product began near the central tower. On the afternoon of August 28, demolition workers carried out a final full inspection of the tower, prepared the automation for detonation and checked the demolition cable line.

At four o'clock in the afternoon on August 28, a plutonium charge and neutron fuses for it were delivered to the workshop near the tower. The final installation of the charge was completed by three o'clock in the morning on August 29. At four o'clock in the morning, installers rolled the product out of the assembly shop along a rail track and installed it in the tower's freight elevator cage, and then lifted the charge to the top of the tower. By six o'clock the charge was equipped with fuses and connected to the blasting circuit. Then the evacuation of all people from the test field began.

Due to the worsening weather, Kurchatov decided to postpone the explosion from 8.00 to 7.00.

At 6.35, the operators turned on the power to the automation system. 12 minutes before the explosion the field machine was turned on. 20 seconds before the explosion, the operator turned on the main connector (switch) connecting the product to the automatic control system. From that moment on, all operations were performed by an automatic device. Six seconds before the explosion, the main mechanism of the machine turned on the power of the product and some of the field instruments, and one second turned on all the other instruments and issued an explosion signal.

At exactly seven o'clock on August 29, 1949, the entire area was illuminated with a blinding light, which signaled that the USSR had successfully completed the development and testing of its first atomic bomb charge.

The charge power was 22 kilotons of TNT.

20 minutes after the explosion, two tanks equipped with lead protection were sent to the center of the field to conduct radiation reconnaissance and inspect the center of the field. Reconnaissance determined that all structures in the center of the field had been demolished. At the site of the tower, a crater gaped; the soil in the center of the field melted, and a continuous crust of slag formed. Civil buildings and industrial structures were completely or partially destroyed.

The equipment used in the experiment made it possible to carry out optical observations and measurements of heat flow, shock wave parameters, characteristics of neutron and gamma radiation, determine the level of radioactive contamination of the area in the area of ​​the explosion and along the trail of the explosion cloud, and study the impact of the damaging factors of a nuclear explosion on biological objects.

For the successful development and testing of a charge for an atomic bomb, several closed decrees of the Presidium of the Supreme Soviet of the USSR dated October 29, 1949 awarded orders and medals of the USSR to a large group of leading researchers, designers, and technologists; many were awarded the title of Stalin Prize laureates, and more than 30 people received the title of Hero of Socialist Labor.

As a result of the successful test of the RDS-1, the USSR abolished the American monopoly on the possession of atomic weapons, becoming the second nuclear power in the world.

Atomic weapons - a device that receives enormous explosive power from the reactions of ATOMIC FISSION and NUCLEAR fusion.

About atomic weapons

Atomic weapons are the most powerful weapons today, in service with five countries: Russia, the USA, Great Britain, France and China. There are also a number of states that are more or less successfully developing atomic weapons, but their research is either not completed, or these countries do not have necessary means delivery of weapons to the target. India, Pakistan, North Korea, Iraq, Iran have developed nuclear weapons at different levels, Germany, Israel, South Africa and Japan theoretically have the necessary capabilities to create nuclear weapons in a relatively short time.

It is difficult to overestimate the role of nuclear weapons. On the one hand, this is a powerful means of intimidation, on the other hand, it is the most effective tool strengthening peace and preventing military conflicts between powers that possess these weapons. 52 years have passed since the first use of the atomic bomb in Hiroshima. Global community came close to realizing that nuclear war will inevitably lead to a global environmental catastrophe, which will make the further existence of humanity impossible. Over the years, legal mechanisms have been created to defuse tensions and ease the confrontation between nuclear powers. For example, many agreements were signed to reduce the nuclear potential of powers, the Convention on the Non-Proliferation of Nuclear Weapons was signed, according to which possessor countries pledged not to transfer the technology for the production of these weapons to other countries, and countries that do not have nuclear weapons pledged not to take steps to development; finally, quite recently, the superpowers agreed on a complete ban nuclear tests. It is obvious that nuclear weapons are the most important instrument that has become the regulatory symbol of an entire era in the history of international relations and in the history of mankind.

Atomic weapons

ATOMIC WEAPON, a device that receives enormous explosive power from the reactions of ATOMIC FISSION and NUCLEAR fusion. The first nuclear weapons were used by the United States against the Japanese cities of Hiroshima and Nagasaki in August 1945. These atomic bombs consisted of two stable subcritical masses of URANIUM and PLUTONIUM, which upon violent collision caused the CRITICAL MASS to be exceeded, thereby provoking an uncontrolled fission chain reaction atomic nuclei. Such explosions release enormous amounts of energy and harmful radiation: the explosive power can be equal to that of 200,000 tons of trinitrotoluene. The much more powerful hydrogen bomb (fusion bomb), first tested in 1952, consists of an atomic bomb that, when exploded, creates a temperature high enough to cause nuclear fusion in a nearby solid layer, usually lithium deterrite. The explosive power can be equal to that of several million tons (megatons) of trinitrotoluene. The area of ​​damage caused by such bombs reaches large sizes: A 15 megaton bomb will detonate all burning materials within 20 km. The third type of nuclear weapon, neutron bomb, is a small hydrogen bomb, also called a high radiation weapon. It causes a weak explosion, which, however, is accompanied by an intense emission of high-speed NEUTRONS. The weakness of the explosion means that buildings are not damaged much. Neutrons cause serious radiation sickness in people within a certain radius of the explosion site, and kill everyone affected within a week.

Initially, the explosion of an atomic bomb (A) forms a fireball (1) with a temperature of millions of degrees Celsius and emits radiation (?). After a few minutes (B), the ball increases in volume and creates a shock wave with high pressure(3). The fireball rises (C), sucking up dust and debris, and forms a mushroom cloud (D), As the fireball increases in volume, it creates a powerful convection current (4), releasing hot radiation (5) and forming a cloud (6), When it explodes 15 megaton bomb destruction from the blast wave is complete (7) in a radius of 8 km, severe (8) in a radius of 15 km and noticeable (I) in a radius of 30 km Even at a distance of 20 km (10) all flammable substances explode, within two days after the bomb explodes, fallout continues to fall 300 km from the explosion with a radioactive dose of 300 roentgens. The accompanying photo shows how the explosion of a large nuclear weapon on the ground creates a huge mushroom cloud of radioactive dust and debris that can reach a height of several kilometers. Dangerous dust in the air is then freely transported by prevailing winds in any direction. Devastation covers a vast area.

Modern atomic bombs and shells

Radius of action

Depending on the power of the atomic charge, atomic bombs and shells are divided into calibers: small, medium and large . To obtain energy equal to the energy of the explosion of a small-caliber atomic bomb, you need to explode several thousand tons of TNT. The TNT equivalent of a medium-caliber atomic bomb is tens of thousands, and that of a large-caliber bomb is hundreds of thousands of tons of TNT. Thermonuclear (hydrogen) weapons can have even greater power; their TNT equivalent can reach millions and even tens of millions of tons. Atomic bombs, the TNT equivalent of which is 1-50 thousand tons, belong to the class of tactical atomic bombs and are intended to solve operational-tactical problems. Tactical weapons also include: artillery shells with an atomic charge with a power of 10–15 thousand tons and atomic charges (with a power of about 5–20 thousand tons) for anti-aircraft guided missiles and shells used to arm fighter aircraft. Atomic and hydrogen bombs with a yield of over 50 thousand tons are classified as strategic weapons.

It should be noted that such a classification of atomic weapons is only conditional, since in reality the consequences of the use of tactical atomic weapons can be no less than those experienced by the population of Hiroshima and Nagasaki, and even greater. It is now obvious that the explosion of just one hydrogen bomb is capable of causing such severe consequences over vast territories that tens of thousands of shells and bombs used in past world wars did not carry with them. And a few hydrogen bombs are quite enough to turn vast territories into desert zones.

Nuclear weapons are divided into 2 main types: atomic and hydrogen (thermonuclear). IN atomic weapons The release of energy occurs due to the fission reaction of the nuclei of atoms of heavy elements uranium or plutonium. In a hydrogen weapon, energy is released by the formation (or fusion) of helium atom nuclei from hydrogen atoms.

Thermonuclear weapons

Modern thermonuclear weapons belong to strategic weapons, which can be used by aviation to destroy the most important industrial and military facilities behind enemy lines, major cities as centers of civilization. The most well-known type of thermonuclear weapon is thermonuclear (hydrogen) bombs, which can be delivered to the target by aircraft. Warheads of missiles for various purposes, including intercontinental ballistic missiles, can also be filled with thermonuclear charges. For the first time such a missile was tested in the USSR back in 1957, and is currently in service Rocket Forces Strategic Purpose missiles consist of several types based on mobile launchers, in silo launchers, on submarines.

Atomic bomb

The operation of thermonuclear weapons is based on the use of a thermonuclear reaction with hydrogen or its compounds. In these reactions, which occur at super high temperatures ah and pressure, energy is released due to the formation of helium nuclei from hydrogen nuclei, or from hydrogen and lithium nuclei. To form helium, mainly heavy hydrogen is used - deuterium, the nuclei of which have an unusual structure - one proton and one neutron. When deuterium is heated to temperatures of several tens of millions of degrees, its atoms lose their electronic shells at the very first collisions with other atoms. As a result, the medium turns out to consist only of protons and electrons moving independently of them. Speed thermal movement particles reaches such values ​​that deuterium nuclei can come closer due to the action of powerful nuclear forces combine with each other to form helium nuclei. The result of this process is the release of energy.

The basic diagram of a hydrogen bomb is as follows. Deuterium and tritium in a liquid state are placed in a tank with a heat-proof shell, which serves to preserve deuterium and tritium in a very cool state for a long time (to maintain it from a liquid state of aggregation). The heat-proof shell may contain 3 layers consisting of a hard alloy, solid carbon dioxide and liquid nitrogen. An atomic charge is placed near a reservoir of hydrogen isotopes. When an atomic charge is detonated, hydrogen isotopes are heated to high temperatures, creating conditions for a thermonuclear reaction to occur and a hydrogen bomb to explode. However, in the process of creating hydrogen bombs it was found that it was impractical to use hydrogen isotopes, since in this case the bomb would become too heavy weight(more than 60 tons), because of which it was impossible to even think about using such charges on strategic bombers, and even more so in ballistic missiles any range. The second problem faced by the developers of the hydrogen bomb was the radioactivity of tritium, which made its long-term storage impossible.

Study 2 addressed the above issues. Liquid isotopes of hydrogen were replaced by the solid chemical compound of deuterium with lithium-6. This made it possible to significantly reduce the size and weight of the hydrogen bomb. In addition, lithium hydride was used instead of tritium, which made it possible to place thermonuclear charges on fighter bombers and ballistic missiles.

The creation of the hydrogen bomb did not mark the end of the development of thermonuclear weapons, more and more new samples appeared, the hydrogen-uranium bomb was created, as well as some of its varieties - heavy-duty and, conversely, small-caliber bombs. The last stage improvement of thermonuclear weapons became the creation of the so-called “clean” hydrogen bomb.

H-bomb

The first developments of this modification of thermo nuclear bomb appeared back in 1957, in the wake of US propaganda statements about the creation of some kind of “humane” thermonuclear weapon that would not cause as much harm to future generations as a conventional thermonuclear bomb. There was some truth in the claims to “humaneness.” Although the destructive power of the bomb was not less, at the same time it could be detonated so that strontium-90, which in a normal hydrogen explosion poisons the earth's atmosphere for a long time, would not spread. Everything within the range of such a bomb will be destroyed, but the danger to living organisms that are far from the explosion, as well as to future generations, will be reduced. However, these statements were refuted by scientists, who recalled that during explosions of atomic or hydrogen bombs, a large amount of radioactive dust is formed, which rises with a powerful air flow to a height of 30 km, and then gradually settles to the ground at large area, infecting her. Research conducted by scientists shows that it will take 4 to 7 years for half of this dust to fall to the ground.

Video

The development of Soviet nuclear weapons began with the mining of radium samples in the early 1930s. In 1939, Soviet physicists Yuliy Khariton and Yakov Zeldovich calculated the chain reaction of fission of the nuclei of heavy atoms. The following year, scientists from the Ukrainian Institute of Physics and Technology submitted applications for the creation of an atomic bomb, as well as methods for producing uranium-235. For the first time, researchers have proposed using conventional explosives as a means to ignite the charge, which would create a critical mass and start a chain reaction.

However, the invention of the Kharkov physicists had its shortcomings, and therefore their application, having visited a variety of authorities, was ultimately rejected. The final word remained with the director of the Radium Institute of the USSR Academy of Sciences, Academician Vitaly Khlopin: “... the application has no real basis. Besides this, there is essentially a lot of fantastic stuff in it... Even if it were possible to implement a chain reaction, the energy that will be released would be better used to power engines, for example, airplanes.”

The appeals of scientists on the eve of the Great Patriotic War were also unsuccessful. Patriotic War to People's Commissar of Defense Sergei Timoshenko. As a result, the invention project was buried on a shelf labeled “top secret.”

  • Vladimir Semyonovich Spinel
  • Wikimedia Commons

In 1990, journalists asked one of the authors of the bomb project, Vladimir Spinel: “If your proposals in 1939-1940 were appreciated at the government level and you were given support, when would the USSR be able to have atomic weapons?”

“I think that with the capabilities that Igor Kurchatov later had, we would have received it in 1945,” Spinel replied.

However, it was Kurchatov who managed to use in his developments successful American schemes for creating a plutonium bomb, obtained by Soviet intelligence.

Atomic race

With the outbreak of the Great Patriotic War, nuclear research was temporarily stopped. The main scientific institutes of the two capitals were evacuated to remote regions.

The head of strategic intelligence, Lavrentiy Beria, was aware of the developments of Western physicists in the field of nuclear weapons. For the first time about the possibility of creating superweapons Soviet leadership learned from the “father” of the American atomic bomb, Robert Oppenheimer, who visited the Soviet Union in September 1939. In the early 1940s, both politicians and scientists realized the reality of obtaining a nuclear bomb, and also that its appearance in the enemy's arsenal would jeopardize the security of other powers.

In 1941, the Soviet government received the first intelligence data from the USA and Great Britain, where active work on creating superweapons had already begun. The main informant was the Soviet “atomic spy” Klaus Fuchs, a physicist from Germany involved in work on the nuclear programs of the United States and Great Britain.

  • Academician of the USSR Academy of Sciences, physicist Pyotr Kapitsa
  • RIA News
  • V. Noskov

Academician Pyotr Kapitsa, speaking on October 12, 1941 at an anti-fascist meeting of scientists, said: “One of the important means modern warfare are explosives. Science indicates the fundamental possibilities of increasing explosive force by 1.5-2 times... Theoretical calculations show that if a modern powerful bomb can, for example, destroy an entire block, then an atomic bomb of even a small size, if feasible, could easily destroy a large metropolitan city with several million people. My personal opinion is that the technical difficulties standing in the way of using intra-atomic energy are still very great. This matter is still doubtful, but it is very likely that there are great opportunities here.”

In September 1942, the Soviet government adopted a decree “On the organization of work on uranium.” Next spring for production of the first Soviet bomb Laboratory No. 2 of the USSR Academy of Sciences was created. Finally, on February 11, 1943, Stalin signed the GKO decision on the program of work to create an atomic bomb. Lead at first important task assigned to Deputy Chairman of the State Defense Committee Vyacheslav Molotov. It was he who had to find a scientific director for the new laboratory.

Molotov himself, in an entry dated July 9, 1971, recalls his decision as follows: “We have been working on this topic since 1943. I was instructed to answer for them, to find a person who could create the atomic bomb. The security officers gave me a list of reliable physicists that I could rely on, and I chose. He called Kapitsa, the academician, to his place. He said that we are not ready for this and that the atomic bomb is not a weapon of this war, but a matter of the future. They asked Joffe - he also had a somewhat unclear attitude towards this. In short, I had the youngest and still unknown Kurchatov, he was not allowed to move. I called him, we talked, he made a good impression on me. But he said he still has a lot of uncertainty. Then I decided to give him our intelligence materials - the intelligence officers had done a very important job. Kurchatov sat in the Kremlin for several days, with me, over these materials.”

Over the next couple of weeks, Kurchatov thoroughly studied the data received by intelligence and drew up an expert opinion: “The materials are of enormous, invaluable importance for our state and science... The totality of information indicates the technical possibility of solving the entire uranium problem in a much shorter time than our scientists think who are not familiar with the progress of work on this problem abroad.”

In mid-March, Igor Kurchatov took over as scientific director of Laboratory No. 2. In April 1946, it was decided to create the KB-11 design bureau for the needs of this laboratory. The top-secret facility was located on the territory of the former Sarov Monastery, several tens of kilometers from Arzamas.

  • Igor Kurchatov (right) with a group of employees of the Leningrad Institute of Physics and Technology
  • RIA News

KB-11 specialists were supposed to create an atomic bomb using plutonium as a working substance. At the same time, in the process of creating the first nuclear weapon in the USSR, domestic scientists relied on the designs of the US plutonium bomb, which was successfully tested in 1945. However, since the production of plutonium in the Soviet Union had not yet been carried out, physicists at the initial stage used uranium mined in Czechoslovakian mines, as well as in the territories of East Germany, Kazakhstan and Kolyma.

The first Soviet atomic bomb was named RDS-1 ("Special Jet Engine"). A group of specialists led by Kurchatov managed to load a sufficient amount of uranium into it and start a chain reaction in the reactor on June 10, 1948. The next step was to use plutonium.

“This is atomic lightning”

In the plutonium "Fat Man", dropped on Nagasaki on August 9, 1945, American scientists placed 10 kilograms of radioactive metal. The USSR managed to accumulate this amount of substance by June 1949. The head of the experiment, Kurchatov, informed the curator of the atomic project, Lavrenty Beria, about his readiness to test the RDS-1 on August 29.

A part of the Kazakh steppe with an area of ​​about 20 kilometers was chosen as a testing ground. In its central part, specialists built a metal tower almost 40 meters high. It was on it that the RDS-1 was installed, the mass of which was 4.7 tons.

Soviet physicist Igor Golovin describes the situation at the test site a few minutes before the start of the tests: “Everything is fine. And suddenly, amid general silence, ten minutes before the “hour”, Beria’s voice is heard: “But nothing will work out for you, Igor Vasilyevich!” - “What are you talking about, Lavrenty Pavlovich! It will definitely work!” - Kurchatov exclaims and continues to watch, only his neck turned purple and his face became gloomily concentrated.

To a prominent scientist in the field of atomic law, Abram Ioyrysh, Kurchatov’s condition seems similar to a religious experience: “Kurchatov rushed out of the casemate, ran up the earthen rampart and shouting “She!” waved his arms widely, repeating: “She, she!” - and enlightenment spread across his face. The explosion column swirled and went into the stratosphere. TO command post a shock wave was approaching, clearly visible on the grass. Kurchatov rushed towards her. Flerov rushed after him, grabbed him by the hand, forcibly dragged him into the casemate and closed the door.” The author of Kurchatov’s biography, Pyotr Astashenkov, gives his hero the following words: “This is atomic lightning. Now she is in our hands..."

Immediately after the explosion, the metal tower collapsed to the ground, and in its place only a crater remained. A powerful shock wave threw highway bridges a couple of tens of meters away, and nearby cars scattered across the open spaces almost 70 meters from the explosion site.

  • Nuclear mushroom of the RDS-1 ground explosion on August 29, 1949
  • Archive of RFNC-VNIIEF

One day, after another test, Kurchatov was asked: “Aren’t you worried about the moral side of this invention?”

“You asked a legitimate question,” he replied. “But I think it’s addressed incorrectly.” It is better to address it not to us, but to those who unleashed these forces... What is scary is not physics, but the adventurous game, not science, but its use by scoundrels... When science makes a breakthrough and opens up the possibility of actions affecting millions of people, the need arises rethink moral norms to bring these actions under control. But nothing like that happened. Quite the contrary. Just think about it - Churchill's speech in Fulton, military bases, bombers along our borders. The intentions are very clear. Science has been turned into a tool of blackmail and the main decisive factor in politics. Do you really think that morality will stop them? And if this is the case, and this is the case, you have to talk to them in their language. Yes, I know: the weapons we created are instruments of violence, but we were forced to create them in order to avoid more disgusting violence! — the answer of the scientist is described in the book “A-bomb” by Abram Ioyrysh and nuclear physicist Igor Morokhov.

A total of five RDS-1 bombs were manufactured. All of them were stored in the closed city of Arzamas-16. Now you can see a model of the bomb in the nuclear weapons museum in Sarov (formerly Arzamas-16).

One day - one truth" url="https://diletant.media/one-day/26522782/">

7 countries with nuclear weapons form the nuclear club. Each of these states spent millions to create their own atomic bomb. Development has been going on for years. But without the gifted physicists who were tasked with conducting research in this area, nothing would have happened. About these people in today's Diletant selection. media.

Robert Oppenheimer

The parents of the man under whose leadership the world's first atomic bomb was created had nothing to do with science. Oppenheimer's father was involved in the textile trade, his mother was an artist. Robert graduated from Harvard early, took a course in thermodynamics and became interested in experimental physics.


After several years of work in Europe, Oppenheimer moved to California, where he lectured for two decades. When the Germans discovered uranium fission in the late 1930s, the scientist began to think about the problem of nuclear weapons. Since 1939, he actively participated in the creation of the atomic bomb as part of the Manhattan Project and directed the laboratory at Los Alamos.

There, on July 16, 1945, Oppenheimer’s “brainchild” was tested for the first time. “I have become death, the destroyer of worlds,” said the physicist after the tests.

A few months later, atomic bombs were dropped on the Japanese cities of Hiroshima and Nagasaki. Oppenheimer has since insisted on the use of atomic energy exclusively for peaceful purposes. Having become a defendant in a criminal case due to his unreliability, the scientist was removed from secret developments. He died in 1967 from laryngeal cancer.

Igor Kurchatov

The USSR acquired its own atomic bomb four years later than the Americans. It could not have happened without the help of intelligence officers, but the merits of the scientists who worked in Moscow should not be underestimated. Atomic research was led by Igor Kurchatov. His childhood and youth were spent in Crimea, where he first learned to be a mechanic. Then he graduated from the Faculty of Physics and Mathematics of the Taurida University and continued to study in Petrograd. There he entered the laboratory of the famous Abram Ioffe.

Kurchatov headed the Soviet atomic project when he was only 40 years old. Years of painstaking work involving leading specialists have brought long-awaited results. Our country's first nuclear weapon, called RDS-1, was tested at the Semipalatinsk test site on August 29, 1949.

The experience accumulated by Kurchatov and his team allowed the Soviet Union to subsequently launch the world's first industrial nuclear power plant, as well as a nuclear reactor for a submarine and an icebreaker, which no one had achieved before.

Andrey Sakharov

The hydrogen bomb appeared first in the United States. But the American model was the size of a three-story house and weighed more than 50 tons. Meanwhile, the RDS-6s product, created by Andrei Sakharov, weighed only 7 tons and could fit on a bomber.

During the war, Sakharov, while evacuated, graduated with honors from Moscow State University. He worked as an engineer-inventor at a military plant, then entered graduate school at the Lebedev Physical Institute. Under the leadership of Igor Tamm, he worked in a research group for the development of thermonuclear weapons. Sakharov came up with the basic principle of the Soviet hydrogen bomb - the puff pastry.

The first Soviet hydrogen bomb was tested in 1953

The first Soviet hydrogen bomb was tested near Semipalatinsk in 1953. To evaluate its destructive capabilities, a city of industrial and administrative buildings was built at the test site.

Since the late 1950s, Sakharov devoted a lot of time to human rights activities. He condemned the arms race, criticized the communist government, spoke out for the abolition of the death penalty and against forced psychiatric treatment of dissidents. He opposed the entry of Soviet troops into Afghanistan. Andrei Sakharov was awarded the Nobel Peace Prize, and in 1980 he was exiled to Gorky for his beliefs, where he repeatedly went on hunger strikes and from where he was able to return to Moscow only in 1986.

Bertrand Goldschmidt

The ideologist of the French nuclear program was Charles de Gaulle, and the creator of the first bomb was Bertrand Goldschmidt. Before the war started future specialist studied chemistry and physics, joined Marie Curie. The German occupation and the Vichy government's attitude towards Jews forced Goldschmidt to stop his studies and emigrate to the United States, where he collaborated first with American and then with Canadian colleagues.


In 1945, Goldschmidt became one of the founders of the French Atomic Energy Commission. The first test of the bomb created under his leadership occurred only 15 years later - in the southwest of Algeria.

Qian Sanqiang

China joined the club nuclear powers only in October 1964. Then the Chinese tested their own atomic bomb with a yield of more than 20 kilotons. Mao Zedong decided to develop this industry after his first trip to the Soviet Union. In 1949, Stalin showed the great helmsman the capabilities of nuclear weapons.

The Chinese nuclear project was led by Qian Sanqiang. A graduate of the physics department of Tsinghua University, he went to study in France at public expense. He worked at the Radium Institute of the University of Paris. Qian communicated a lot with foreign scientists and carried out quite serious research, but he became homesick and returned to China, taking several grams of radium as a gift from Irene Curie.



If you find an error, please select a piece of text and press Ctrl+Enter.