American physicist, creator of the atomic bomb. Atomic weapons. Serov Ivan Aleksandrovich - head of the operation to create a bomb

    In the 30s of the last century, many physicists worked on the creation atomic bomb. It is officially believed that the United States was the first to create, test and use the atomic bomb. However, I recently read books by Hans-Ulrich von Krantz, a researcher of the secrets of the Third Reich, where he claims that the Nazis invented the bomb, and the world's first atomic bomb was tested by them in March 1944 in Belarus. The Americans seized all the documents about the atomic bomb, scientists and the samples themselves (there were, allegedly, 13). So the Americans had 3 samples available, and the Germans transported 10 to a secret base in Antarctica. Kranz confirms his conclusions by the fact that after Hiroshima and Nagasaki in the USA there was no news of bomb tests of more than 1.5, and after that the tests were unsuccessful. This, in his opinion, would be impossible if the bombs were created by the United States itself.

    We are unlikely to know the truth.

    In 1940, Enrico Fermi finished working on a theory called Nuclear Chain Reaction. After that, the Americans created their first nuclear reactor. In 1945, the Americans created three atomic bombs. The first was blown up in their state of New Mexico, and the next two were dropped on Japan.

    It is hardly possible to specifically name any person that he is the creator of atomic (nuclear) weapons. Without the discoveries of the predecessors, there would be no final result. But, many call it Otto Hahn, a German-born nuclear chemist, the father of the atomic bomb. Apparently, it was his discoveries in the field of nuclear fission, together with Fritz Strassmann, that can be considered fundamental in the creation of nuclear weapons.

    father Soviet weapons mass destruction it is customary to consider Igor Kurchatov and Soviet intelligence and personally Klaus Fuchs. However, do not forget about the discoveries of our scientists in the late 30s. Work on the fission of uranium was carried out by A. K. Peterzhak and G. N. Flerov.

    The atomic bomb is a product that was not invented immediately. In order to come to a result, it took decades of various studies. Before copies were invented for the first time in 1945, many experiments and discoveries were made. All scientists who are related to these works can be counted among the creators of the atomic bomb. Besom speaks directly about the team of inventors of the bomb itself, then there was a whole team, it is better to read about this on Wikipedia.

    A large number of scientists and engineers from various industries took part in the creation of the atomic bomb. To name just one would be unfair. Wikipedia does not mention French physicist Henri Becquerel, Russian scientists Pierre Curie and his wife Maria Sklodowska-Curie, who discovered the radioactivity of uranium, the German theoretical physicist Albert Einstein.

    Quite an interesting question.

    After reading the information on the Internet, I concluded that the USSR and the USA began to work on the creation of these bombs at the same time.

    For more details, I think you can read the article. Everything is written there in great detail.

    Many discoveries have their own parents, but inventions are often the collective result of a common cause, when everyone contributed. In addition, many inventions are, as it were, a product of their era, so work on them is carried out simultaneously in different laboratories. so with the atomic bomb, there is no single parent.

    Quite a difficult task, it is difficult to say who exactly invented the atomic bomb, because many scientists were involved in its appearance, who consistently worked on the study of radioactivity, uranium enrichment, the chain reaction of fission of heavy nuclei, etc. Here are the main points of its creation:

    By 1945, American scientists had invented two atomic bombs. Baby weighed 2722 kg and was equipped with enriched Uranium-235 and fat man with a charge of Plutonium-239 with a power of more than 20 kt had a mass of 3175 kg.

    On given time completely different in size and shape

    Work on nuclear projects in the US and the USSR began simultaneously. In July 1945, an American atomic bomb (Robert Oppenheimer, head of the laboratory) was detonated at the test site, and then bombs were also dropped on the notorious Nagasaki and Hiroshima, respectively, in August. First test Soviet bomb happened in 1949 (project manager Igor Kurchatov), ​​but as they say, its creation was made possible thanks to excellent intelligence.

    There is also information that, in general, the Germans were the creators of the atomic bomb .. For example, you can read about this here ..

    There is simply no unequivocal answer to this question - many of the most talented physicists and chemists, whose names are listed in this article, worked on the creation of a deadly weapon capable of destroying the planet - as you can see, the inventor was far from alone.

The development of Soviet nuclear weapons began with the extraction of samples of radium in the early 1930s. In 1939, Soviet physicists Yuli Khariton and Yakov Zel'dovich calculated the chain reaction of nuclear fission of heavy atoms. The following year, scientists from the Ukrainian Institute of Physics and Technology submitted applications for the creation of an atomic bomb, as well as methods for producing uranium-235. For the first time, researchers proposed using conventional explosives as a means to ignite the charge, which would create a critical mass and start a chain reaction.

However, the invention of the Kharkov physicists had its shortcomings, and therefore their application, having managed to visit various authorities, was ultimately rejected. The decisive word was left to the director of the Radium Institute of the USSR Academy of Sciences, Academician Vitaly Khlopin: “... the application has no real basis. In addition, there is in fact a lot of fantastic in it ... Even if it were possible to realize a chain reaction, then the energy that is released is better used to drive engines, for example, aircraft.

The appeals of scientists on the eve of the Great Patriotic War to People's Commissar of Defense Sergei Timoshenko. As a result, the project of the invention was buried on a shelf labeled "top secret".

  • Vladimir Semyonovich Spinel
  • Wikimedia Commons

In 1990, journalists asked Vladimir Shpinel, one of the authors of the bomb project: “If your proposals in 1939-1940 were duly appreciated at the government level and you were given support, when could the USSR have atomic weapons?”

“I think that with such opportunities that Igor Kurchatov later had, we would have received it in 1945,” Spinel replied.

However, it was Kurchatov who managed to use in his developments the successful American schemes for creating a plutonium bomb obtained by Soviet intelligence.

nuclear race

With the beginning of the Great Patriotic War, nuclear research was temporarily stopped. The main scientific institutes of the two capitals were evacuated to remote regions.

The head of strategic intelligence, Lavrenty Beria, was aware of the developments of Western physicists in the field of nuclear weapons. For the first time about the possibility of creating a superweapon Soviet leadership learned from the "father" of the American atomic bomb, Robert Oppenheimer, who visited Soviet Union in September 1939. In the early 1940s, both politicians and scientists realized the reality of getting nuclear bomb, as well as the fact that its appearance in the arsenal of the enemy will endanger the security of other powers.

In 1941, the Soviet government received the first intelligence from the United States and Great Britain, where active work had already begun on the creation of a superweapon. The main informant was the Soviet "atomic spy" Klaus Fuchs, a physicist from Germany involved in the work on nuclear programs USA and UK.

  • Academician of the Academy of Sciences of the USSR, physicist Pyotr Kapitsa
  • RIA News
  • V. Noskov

Academician Pyotr Kapitsa, speaking on October 12, 1941 at an anti-fascist rally of scientists, stated: “One of the important means modern war are explosives. Science indicates the fundamental possibility of increasing the explosive force by 1.5-2 times ... Theoretical calculations show that if a modern powerful bomb can, for example, destroy an entire quarter, then an atomic bomb of even a small size, if it is feasible, could easily destroy a major metropolitan city with several million inhabitants. My personal opinion is that the technical difficulties that stand in the way of using intra-atomic energy are still very great. So far, this case is still doubtful, but it is very likely that there are great opportunities here.

In September 1942, the Soviet government adopted a resolution "On the organization of work on uranium". In the spring of the following year, Laboratory No. 2 of the USSR Academy of Sciences was created to produce the first Soviet bomb. Finally, on February 11, 1943, Stalin signed the decision of the GKO on the program of work to create an atomic bomb. Lead at first important task instructed the Deputy Chairman of the GKO Vyacheslav Molotov. It was he who had to find the scientific director of the new laboratory.

Molotov himself, in a note dated July 9, 1971, recalls his decision as follows: “We have been working on this topic since 1943. I was instructed to answer for them, to find such a person who could carry out the creation of an atomic bomb. The Chekists gave me a list of reliable physicists who could be relied upon, and I chose. He summoned Kapitsa to himself, an academician. He said that we were not ready for this and that the atomic bomb was not a weapon of this war, but a matter for the future. Ioffe was asked - he, too, somehow vaguely reacted to this. In short, I had the youngest and still unknown Kurchatov, he was not given a go. I called him, we talked, he made a good impression on me. But he said he still had a lot of ambiguities. Then I decided to give him the materials of our intelligence - the intelligence officers did a very important job. Kurchatov spent several days in the Kremlin, with me, over these materials.

Over the next couple of weeks, Kurchatov thoroughly studied the data obtained by intelligence and drew up an expert opinion: “The materials are of tremendous, invaluable importance for our state and science ... The totality of information indicates the technical possibility of solving the entire uranium problem in a much shorter time than our scientists think who are not familiar with the progress of work on this problem abroad.

In mid-March, Igor Kurchatov took over as scientific director of Laboratory No. 2. In April 1946, for the needs of this laboratory, it was decided to create a design bureau KB-11. The top-secret object was located on the territory of the former Sarov Monastery, a few tens of kilometers from Arzamas.

  • Igor Kurchatov (right) with a group of employees of the Leningrad Institute of Physics and Technology
  • RIA News

KB-11 specialists were supposed to create an atomic bomb using plutonium as a working substance. At the same time, in the process of creating the first nuclear weapon in the USSR, domestic scientists relied on the schemes of the US plutonium bomb, which was successfully tested in 1945. However, since the production of plutonium in the Soviet Union was not yet involved, physicists at the initial stage used uranium mined in Czechoslovak mines, as well as in the territories of East Germany, Kazakhstan and Kolyma.

The first Soviet atomic bomb was named RDS-1 ("Special Jet Engine"). A group of specialists led by Kurchatov managed to load a sufficient amount of uranium into it and start a chain reaction in the reactor on June 10, 1948. The next step was to use plutonium.

"This is atomic lightning"

In the plutonium "Fat Man", dropped on Nagasaki on August 9, 1945, American scientists laid 10 kilograms of radioactive metal. The USSR managed to accumulate such a quantity of substance by June 1949. The head of the experiment, Kurchatov, told the curator nuclear project Lavrenty Beria about readiness to test the RDS-1 on August 29.

A part of the Kazakh steppe with an area of ​​about 20 kilometers was chosen as a testing ground. In its central part, experts built a metal tower almost 40 meters high. It was on it that the RDS-1 was installed, the mass of which was 4.7 tons.

The Soviet physicist Igor Golovin describes the situation that prevailed at the test site a few minutes before the start of the tests: “Everything is fine. And suddenly, with a general silence, ten minutes before “one”, Beria’s voice is heard: “But nothing will work out for you, Igor Vasilyevich!” - “What are you, Lavrenty Pavlovich! It will definitely work!" - exclaims Kurchatov and continues to watch, only his neck turned purple and his face became gloomy and concentrated.

To Abram Ioyrysh, a prominent scientist in the field of atomic law, Kurchatov’s condition seems similar to a religious experience: “Kurchatov rushed out of the casemate, ran up an earthen rampart and shouted “She!” waved his arms widely, repeating: “She, she!” and a gleam spread across his face. The pillar of the explosion swirled and went into the stratosphere. TO command post a shock wave was approaching, clearly visible on the grass. Kurchatov rushed towards her. Flerov rushed after him, grabbed him by the arm, forcibly dragged him into the casemate and closed the door. The author of the biography of Kurchatov, Pyotr Astashenkov, endows his hero with the following words: “This is atomic lightning. Now she is in our hands ... "

Immediately after the explosion, the metal tower collapsed to the ground, and only a funnel remained in its place. A powerful shock wave threw highway bridges a couple of tens of meters away, and the cars that were nearby scattered across the open spaces almost 70 meters from the explosion site.

  • Nuclear mushroom ground explosion RDS-1 August 29, 1949
  • Archive RFNC-VNIIEF

Once, after another test, Kurchatov was asked: “Are you not worried about the moral side of this invention?”

“You asked a legitimate question,” he replied. But I think it's misdirected. It is better to address it not to us, but to those who unleashed these forces... It is not physics that is terrible, but an adventurous game, not science, but the use of it by scoundrels... When science makes a breakthrough and opens up the possibility for actions that affect millions of people, the need arises to rethink the norms of morality in order to bring these actions under control. But nothing of the sort happened. Rather the opposite. Just think about it - Churchill's speech in Fulton, military bases, bombers along our borders. The intentions are very clear. Science has been turned into an instrument of blackmail and the main determinant of politics. Do you think morality will stop them? And if this is the case, and this is the case, you have to talk to them in their language. Yes, I know that the weapon we have created is an instrument of violence, but we were forced to create it in order to avoid more heinous violence!” - the answer of the scientist in the book of Abram Ioyrysh and nuclear physicist Igor Morokhov "A-bomb" is described.

A total of five RDS-1 bombs were manufactured. All of them were stored in the closed city of Arzamas-16. Now you can see the model of the bomb in the nuclear weapons museum in Sarov (former Arzamas-16).

Creation of the Soviet atomic bomb (military unit nuclear project of the USSR) - fundamental research, development of technologies and their practical implementation in the USSR, aimed at creating weapons of mass destruction using nuclear energy. The events were stimulated to a large extent by the activities in this direction of scientific institutions and the military industry of other countries, primarily Nazi Germany and the United States [ ] . In 1945, on August 6 and 9, American planes dropped two atomic bombs on the Japanese cities of Hiroshima and Nagasaki. Almost half of the civilians died immediately in the explosions, others were seriously ill and continue to die to this day.

Encyclopedic YouTube

  • 1 / 5

    In 1930-1941, work was actively carried out in the nuclear field.

    In this decade, fundamental radiochemical research was carried out, without which a complete understanding of these problems, their development, and, even more so, their implementation, is generally unthinkable.

    Work in 1941-1943

    Foreign intelligence information

    As early as September 1941, the USSR began to receive intelligence information about the conduct of secret intensive research work in the UK and the USA aimed at developing methods for using atomic energy for military purposes and creating atomic bombs of enormous destructive power. One of the most important documents received back in 1941 by Soviet intelligence is the report of the British “MAUD Committee”. From the materials of this report, received through the channels of foreign intelligence NKVD USSR from Donald MacLean, it followed that the creation of an atomic bomb was real, that it could probably be created even before the end of the war and, therefore, could affect its course.

    Intelligence information about work on the problem of atomic energy abroad, which was available in the USSR at the time the decision was made to resume work on uranium, was obtained both through the channels of the NKVD intelligence and through the channels of the Main Intelligence Directorate of the General Staff (GRU) of the Red Army.

    In May 1942, the leadership of the GRU informed the Academy of Sciences of the USSR about the presence of reports of work abroad on the problem of using atomic energy for military purposes and asked to be informed whether this problem currently has a real practical basis. The answer to this request in June 1942 was given by V. G. Khlopin, who noted that for Last year V scientific literature there are almost no publications related to the solution of the problem of the use of atomic energy.

    An official letter from the head of the NKVD L.P. Beria addressed to I.V. Stalin with information about the work on the use of atomic energy for military purposes abroad, proposals for organizing these works in the USSR and secret acquaintance with the materials of the NKVD of prominent Soviet specialists, the variants of which were prepared by the NKVD officers back in late 1941 - early 1942, it was sent to I.V. Stalin only in October 1942, after the adoption of the GKO order to resume work on uranium in the USSR.

    Soviet intelligence had detailed information about the work on the creation of an atomic bomb in the United States, coming from specialists who understood the danger of a nuclear monopoly or sympathizers of the USSR, in particular, Klaus Fuchs, Theodor Hall, Georges Koval and David Greenglass. However, according to some, a letter addressed to Stalin at the beginning of 1943 by the Soviet physicist G. Flerov, who managed to explain the essence of the problem in a popular way, was of decisive importance. On the other hand, there is reason to believe that G. N. Flerov's work on the letter to Stalin was not completed and it was not sent.

    The hunt for data from America's uranium project began at the initiative of Leonid Kvasnikov, head of the NKVD scientific and technical intelligence department, as early as 1942, but only fully unfolded after the arrival in Washington of the famous couple of Soviet intelligence officers: Vasily Zarubin and his wife Elizaveta. It was with them that the resident of the NKVD in San Francisco, Grigory Kheifits, interacted, saying that the most prominent American physicist Robert Oppenheimer and many of his colleagues left California for an unknown place where they would be creating some kind of superweapon.

    To double-check the data of "Charon" (this was the code name of Heifitz) was entrusted to Lieutenant Colonel Semyon Semenov (pseudonym "Twain"), who had worked in the United States since 1938 and had assembled a large and active intelligence group there. It was Twain who confirmed the reality of the work on the creation of the atomic bomb, named the code for the Manhattan Project and the location of its main scientific center - the former colony for juvenile delinquents Los Alamos in New Mexico. Semyonov also gave the names of some scientists who worked there, who at one time were invited to the USSR to participate in large Stalinist construction projects and who, having returned to the USA, did not lose ties with the extreme left organizations.

    Thus, Soviet agents were introduced into the scientific and design centers of America, where a nuclear weapon was created. However, in the midst of establishing intelligence operations, Lisa and Vasily Zarubin were urgently recalled to Moscow. They were lost in conjecture, because not a single failure happened. It turned out that the Center received a denunciation from Mironov, an employee of the residency, who accused the Zarubins of treason. And for almost half a year, Moscow counterintelligence checked these accusations. They were not confirmed, however, the Zarubins were no longer allowed to go abroad.

    In the meantime, the work of the embedded agents had already brought the first results - reports began to arrive, and they had to be immediately sent to Moscow. This work was entrusted to a group of special couriers. The most operative and fearless were the Coens, Maurice and Lona. After Maurice was drafted into the US Army, Lona began to independently deliver information materials from New Mexico to New York. To do this, she traveled to the small town of Albuquerque, where, for appearances, she visited a tuberculosis dispensary. There she met with agents undercover nicknames "Mlad" and "Ernst".

    However, the NKVD still managed to extract several tons of low-enriched uranium in.

    The first priority was to organize industrial production plutonium-239 and uranium-235. To solve the first problem, it was necessary to create experimental, and then industrial nuclear reactors, the construction of radiochemical and special metallurgical shops. To solve the second problem, the construction of a plant for the separation of uranium isotopes by the diffusion method was launched.

    The solution of these problems turned out to be possible as a result of the creation of industrial technologies, the organization of production and the development of the necessary large quantities of pure metallic uranium, uranium oxide, uranium hexafluoride, other uranium compounds, high purity graphite and a number of other special materials, the creation of a complex of new industrial units and devices. The insufficient volume of uranium ore mining and the production of uranium concentrates in the USSR (the first plant for the production of uranium concentrate - "Combine No. 6 NKVD USSR" in Tajikistan was founded in 1945) during this period was compensated by trophy raw materials and products of uranium enterprises of the countries of Eastern Europe with which the USSR entered into relevant agreements.

    In 1945, the Government of the USSR made the following major decisions:

    • on the creation on the basis of the Kirov Plant (Leningrad) of two special experimental design bureaus designed to develop equipment for the production of uranium enriched in the isotope 235 by the gaseous diffusion method;
    • on the start of construction in the Middle Urals (near the village of Verkh-Neyvinsky) of a diffusion plant for the production of enriched uranium-235;
    • on the organization of a laboratory for work on the creation of heavy water reactors on natural uranium;
    • site selection and construction start Southern Urals the country's first enterprise for the production of plutonium-239.

    The structure of the enterprise in the South Urals was to include:

    • uranium-graphite reactor on natural (natural) uranium (Plant "A");
    • radiochemical production for the separation of plutonium-239 from natural (natural) uranium irradiated in the reactor (plant "B");
    • chemical and metallurgical production for the production of high-purity metallic plutonium (Plant "B").

    Participation of German specialists in the nuclear project

    In 1945, hundreds of German scientists related to the nuclear problem were brought from Germany to the USSR. Most of them (about 300 people) were brought to Sukhumi and secretly placed in the former estates of Grand Duke Alexander Mikhailovich and the millionaire Smetsky (Sinop and Agudzery sanatoriums). Equipment from the German Institute of Chemistry and Metallurgy was taken to the USSR, Institute of Physics Kaiser Wilhelm, Siemens Electrotechnical Laboratories, Physical Institute of the German Post Office. Three of the four German cyclotrons, powerful magnets, electron microscopes, oscilloscopes, transformers high voltage, high-precision instruments were brought to the USSR. In November 1945, the Directorate of Special Institutes (9th Directorate of the NKVD of the USSR) was created as part of the NKVD of the USSR to manage the work on the use of German specialists.

    Sanatorium "Sinop" was called "Object" A "" - it was led by Baron Manfred von Ardenne. "Agudzers" became "Object" G "" - it was headed by Gustav  Hertz. Outstanding scientists worked at objects "A" and "G" - Nikolaus Riehl, Max Vollmer, who built the first heavy water production plant in the USSR, Peter Thyssen, designer of nickel filters for gas diffusion separation of uranium isotopes, Max Steenbeck and Gernot Zippe, who worked on centrifuge separation method and subsequently received patents for gas centrifuges in the west. On the basis of objects "A" and "G" was later created (SFTI).

    Some leading German specialists were awarded USSR government awards for this work, including the Stalin Prize.

    In the period 1954-1959 German specialists in different time move to the GDR (Gernot Zippe - to Austria).

    Construction of a gas diffusion plant in Novouralsk

    In 1946, at the production base of plant No. 261 of the People's Commissariat of Aviation Industry in Novouralsk, the construction of a gas diffusion plant began, which was called Combine No. 813 (Plant D-1)) and intended for the production of highly enriched uranium. The plant gave the first production in 1949.

    Construction of uranium hexafluoride production in Kirovo-Chepetsk

    Over time, a whole complex was erected on the site of the selected construction site industrial enterprises, buildings and structures interconnected by a network of roads and railways, a system of heat and power supply, industrial water supply and sewerage. At different times, the secret city was called differently, but most famous name- Chelyabinsk-40 or Sorokovka. Currently industrial complex, which was originally called plant No. 817, is called the Mayak production association, and the city on the shore of Lake Irtyash, in which Mayak workers and their families live, was named Ozyorsk.

    In November 1945, geological surveys began at the selected site, and from the beginning of December, the first builders began to arrive.

    The first head of construction (1946-1947) was Ya. D. Rappoport, later he was replaced by Major General M. M. Tsarevsky. The chief construction engineer was V. A. Saprykin, the first director of the future enterprise was P. T. Bystrov (from April 17, 1946), who was replaced by E. P. Slavsky (from July 10, 1947), and then B. G Muzrukov (since December 1, 1947). I. V. Kurchatov was appointed scientific director of the plant.

    Construction of Arzamas-16

    Products

    Development of the design of atomic bombs

    Decree of the Council of Ministers of the USSR No. 1286-525ss "On the plan for the deployment of KB-11 at Laboratory No. 2 of the USSR Academy of Sciences" defined the first tasks of KB-11: the creation under the scientific supervision of Laboratory No. 2 (Academician I. V. Kurchatov) of atomic bombs, conventionally named in the resolution "jet engines C", in two versions: RDS-1 - an implosion type with plutonium and a cannon-type atomic bomb RDS-2 with uranium-235.

    Tactical and technical specifications for the design of the RDS-1 and RDS-2 were to be developed by July 1, 1946, and the designs of their main components - by July 1, 1947. The fully manufactured RDS-1 bomb was to be presented for state tests for an explosion when installed on the ground by January 1, 1948, in an aviation version - by March 1, 1948, and the RDS-2 bomb - by June 1, 1948 and January 1, 1949, respectively. be carried out in parallel with the organization in KB-11 of special laboratories and the deployment of these laboratories. Such tight deadlines and the organization of parallel work also became possible due to the receipt in the USSR of some intelligence data on American atomic bombs.

    Research laboratories and design departments of KB-11 began to expand their activities directly in

    “I am not the simplest person,” the American physicist Isidor Isaac Rabi once remarked. “But compared to Oppenheimer, I am very, very simple.” Robert Oppenheimer was one of the central figures of the 20th century, whose very "complexity" absorbed the country's political and ethical contradictions.

    During World War II, the brilliant physicist Ajulius Robert Oppenheimer led the development of American nuclear scientists to create the first atomic bomb in human history. The scientist led a secluded and secluded life, and this gave rise to suspicions of treason.

    Atomic weapons are the result of all previous developments in science and technology. Discoveries that are directly related to its occurrence were made at the end of the 19th century. A huge role in revealing the secrets of the atom was played by the studies of A. Becquerel, Pierre Curie and Marie Sklodowska-Curie, E. Rutherford and others.

    In early 1939, the French physicist Joliot-Curie concluded that a chain reaction was possible that would lead to an explosion of monstrous destructive power and that uranium could become an energy source, like an ordinary explosive. This conclusion was the impetus for the development of nuclear weapons.

    Europe was on the eve of World War II, and the potential possession of such powerful weapon pushed militaristic circles to create it as soon as possible, but the problem of the availability of a large amount of uranium ore for large-scale research was a brake. The physicists of Germany, England, the USA, Japan worked on the creation of atomic weapons, realizing that it was impossible to work without a sufficient amount of uranium ore, the USA in September 1940 purchased a large amount of the required ore under false documents from Belgium, which allowed them to work on the creation nuclear weapons in full swing.

    From 1939 to 1945, more than two billion dollars were spent on the Manhattan Project. A huge uranium refinery was built at Oak Ridge, Tennessee. H.C. Urey and Ernest O. Lawrence (inventor of the cyclotron) proposed a purification method based on the principle of gaseous diffusion followed by magnetic separation of two isotopes. A gas centrifuge separated the light Uranium-235 from the heavier Uranium-238.

    On the territory of the United States, in Los Alamos, in the desert expanses of the state of New Mexico, in 1942, an American nuclear center. Many scientists worked on the project, but the main one was Robert Oppenheimer. Under his leadership, the best minds of that time were gathered not only from the USA and England, but from almost all of Western Europe. A huge team worked on the creation of nuclear weapons, including 12 laureates Nobel Prize. Work in Los Alamos, where the laboratory was located, did not stop for a minute. In Europe, meanwhile, the Second World War, and Germany carried out mass bombing of the cities of England, which endangered the English atomic project “Tub Alloys”, and England voluntarily transferred its developments and leading scientists of the project to the USA, which allowed the USA to take a leading position in the development of nuclear physics (the creation of nuclear weapons).

    "The father of the atomic bomb", he was at the same time an ardent opponent of American nuclear policy. Bearing the title of one of the most outstanding physicists of his time, he studied with pleasure the mysticism of ancient Indian books. A communist, traveler and staunch American patriot, a very spiritual person, he was nevertheless willing to betray his friends in order to defend himself against the attacks of anti-communists. The scientist who devised a plan to cause the most damage to Hiroshima and Nagasaki cursed himself for "innocent blood on his hands."

    Writing about this controversial man is not an easy task, but an interesting one, and the 20th century was marked by a number of books about him. However, the rich life of the scientist continues to attract biographers.

    Oppenheimer was born in New York in 1903 to wealthy and educated Jewish parents. Oppenheimer was brought up in love for painting, music, in an atmosphere of intellectual curiosity. In 1922, he entered Harvard University and in just three years received an honors degree, his main subject was chemistry. In the next few years, the precocious young man traveled to several countries in Europe, where he worked with physicists who dealt with the problems of investigating atomic phenomena in the light of new theories. Just a year after graduating from university, Oppenheimer published a scientific paper that showed how deeply he understood new methods. Soon he, together with the famous Max Born, developed the most important part of quantum theory, known as the Born-Oppenheimer method. In 1927, his outstanding doctoral dissertation brought him worldwide fame.

    In 1928 he worked at the Zurich and Leiden universities. In the same year he returned to the USA. From 1929 to 1947 Oppenheimer taught at the University of California and the California Institute of Technology. From 1939 to 1945 he actively participated in the work on the creation of an atomic bomb as part of the Manhattan Project; heading the specially created Los Alamos laboratory.

    In 1929 Oppenheimer, rising star science, accepted offers from two of the several universities that fought for the right to invite him. During the spring semester he taught at the vibrant, fledgling Caltech in Pasadena, and during the fall and winter semesters at UC Berkeley, where he became the first lecturer in quantum mechanics. In fact, the erudite scholar had to adjust for some time, gradually reducing the level of discussion to the capabilities of his students. In 1936 he fell in love with Jean Tatlock, a restless and moody young woman whose passionate idealism found expression in communist activities. Like many thinking people of that time, Oppenheimer explored the ideas of the left movement as one of the possible alternatives, although he did not join the Communist Party, which made him younger brother, sister-in-law and many of his friends. His interest in politics, as well as his ability to read Sanskrit, was the natural result of a constant pursuit of knowledge. In his own words, he was also deeply disturbed by the explosion of anti-Semitism in Nazi Germany and Spain and invested $1,000 a year from his $15,000 annual salary in projects related to communist groups. After meeting Kitty Harrison, who became his wife in 1940, Oppenheimer parted ways with Jean Tetlock and moved away from her circle of leftist friends.

    In 1939, the United States learned that in preparation for global war Nazi Germany discovered the fission of the atomic nucleus. Oppenheimer and other scientists immediately guessed that the German physicists would try to get a controlled chain reaction that could be the key to creating a weapon far more destructive than any that existed at that time. Enlisting the support of the great scientific genius, Albert Einstein, concerned scientists warned President Franklin D. Roosevelt of the danger in a famous letter. In authorizing funding for projects aimed at creating untested weapons, the president acted in strict secrecy. Ironically, many leading scientists worked with American scientists in laboratories scattered throughout the country. scientists of the world forced to flee their homeland. One part of the university groups explored the possibility of creating a nuclear reactor, others took up the solution of the problem of separating the uranium isotopes necessary for the release of energy in a chain reaction. Oppenheimer, who had previously been occupied with theoretical problems, was offered to organize a wide front of work only at the beginning of 1942.

    The US Army's atomic bomb program was codenamed Project Manhattan and was led by Colonel Leslie R. Groves, 46, a professional military man. Groves, who described the scientists working on the atomic bomb as "a costly bunch of lunatics," however, acknowledged that Oppenheimer had a hitherto untapped ability to control his fellow debaters when the heat was on. The physicist proposed that all scientists be united in one laboratory in the quiet provincial town of Los Alamos, New Mexico, in an area that he knew well. By March 1943, the boarding house for boys had been turned into a tightly guarded secret center, of which Oppenheimer became scientific director. By insisting on the free exchange of information between scientists, who were strictly forbidden to leave the center, Oppenheimer created an atmosphere of trust and mutual respect which contributed to the amazing success in the work. Not sparing himself, he remained the head of all areas of this complex project, although his personal life suffered greatly from this. But for a mixed group of scientists - among whom there were more than a dozen then or future Nobel laureates and of which a rare person did not possess a pronounced individuality - Oppenheimer was an unusually dedicated leader and subtle diplomat. Most of them would agree that the lion's share of the credit for the project's eventual success belongs to him. By December 30, 1944, Groves, who by that time had become a general, could confidently say that the two billion dollars spent would be ready for action by August 1 of the next year. But when Germany admitted defeat in May 1945, many of the researchers working at Los Alamos began to think about using new weapons. After all, probably, Japan would have capitulated soon without the atomic bombing. Should the United States be the first country in the world to use such a terrible device? Harry S. Truman, who became president after Roosevelt's death, appointed a committee to study possible consequences use of the atomic bomb, which included Oppenheimer. Experts decided to recommend dropping an atomic bomb without warning on a major Japanese military facility. Oppenheimer's consent was also obtained.

    All these worries would, of course, be moot if the bomb had not gone off. The test of the world's first atomic bomb was carried out on July 16, 1945, about 80 kilometers from the air base in Alamogordo, New Mexico. The device under test, named "Fat Man" for its convex shape, was attached to a steel tower set up in a desert area. Exactly at 5.30 am the detonator with remote control triggered the bomb. With an echoing roar across a 1.6 kilometer diameter area, a gigantic purple-green-orange fireball shot up into the sky. The earth shook from the explosion, the tower disappeared. Rising rapidly up to the sky white pole smoke and began to gradually expand, taking on a terrifying mushroom shape at an altitude of about 11 kilometers. The first nuclear explosion startled scientific and military observers near the test site and turned their heads. But Oppenheimer remembered the lines from the Indian epic poem Bhagavad Gita: "I will become Death, the destroyer of worlds." Until the end of his life, satisfaction from scientific success was always mixed with a sense of responsibility for the consequences.

    On the morning of August 6, 1945, there was a clear, cloudless sky over Hiroshima. As before, the approach from the east of two american aircraft(one of them was called Enola Gay) at an altitude of 10-13 km did not cause alarm (because every day they appeared in the sky of Hiroshima). One of the planes dived and dropped something, and then both planes turned and flew away. The dropped object on a parachute slowly descended and suddenly exploded at an altitude of 600 m above the ground. It was the "Baby" bomb.

    Three days after the "Kid" was blown up in Hiroshima, an exact copy of the first "Fat Man" was dropped on the city of Nagasaki. On August 15, Japan, whose resolve had finally been broken by this new weapon, signed an unconditional surrender. However, the voices of skeptics were already being heard, and Oppenheimer himself predicted two months after Hiroshima that "mankind will curse the names of Los Alamos and Hiroshima."

    The whole world was shocked by the explosions in Hiroshima and Nagasaki. Tellingly, Oppenheimer managed to combine the excitement of testing a bomb on civilians and the joy that the weapon had finally been tested.

    Nevertheless, the following year he accepted an appointment as chairman of the scientific council of the Atomic Energy Commission (AEC), thus becoming the most influential adviser to the government and the military on nuclear issues. While the West and the Stalin-led Soviet Union were seriously preparing for cold war, each side focused on the arms race. Although many of the scientists who were part of the Manhattan Project did not support the idea of ​​\u200b\u200bcreating a new weapon, former employees Oppenheimer Edward Teller and Ernest Lawrence considered that US national security required the rapid development of a hydrogen bomb. Oppenheimer was horrified. From his point of view, the two nuclear powers were already opposed to each other, like "two scorpions in a jar, each able to kill the other, but only at the risk of his own life." With the spread of new weapons in wars, there would no longer be winners and losers - only victims. And the "father of the atomic bomb" made a public statement that he was against the development of the hydrogen bomb. Always feeling out of place under Oppenheimer and clearly envious of his achievements, Teller began to make efforts to lead new project, implying that Oppenheimer should no longer be involved in the work. He told FBI investigators that his rival was keeping scientists from working on the hydrogen bomb with his authority, and revealed the secret that Oppenheimer suffered bouts of severe depression in his youth. When President Truman agreed in 1950 to finance the development of the hydrogen bomb, Teller could celebrate victory.

    In 1954, Oppenheimer's enemies launched a campaign to remove him from power, which they succeeded after a month-long search for "black spots" in his personal biography. As a result, a show case was organized in which Oppenheimer was opposed by many influential political and scientific figures. As Albert Einstein later put it: "Oppenheimer's problem was that he loved a woman who didn't love him: the US government."

    By allowing Oppenheimer's talent to flourish, America doomed him to death.


    Oppenheimer is known not only as the creator of the American atomic bomb. He owns many works on quantum mechanics, relativity theory, elementary particle physics, theoretical astrophysics. In 1927 he developed the theory of the interaction of free electrons with atoms. Together with Born, he created the theory of the structure of diatomic molecules. In 1931, he and P. Ehrenfest formulated a theorem, the application of which to the nitrogen nucleus showed that the proton-electron hypothesis of the structure of nuclei leads to a number of contradictions with the known properties of nitrogen. Investigated the internal conversion of g-rays. In 1937 he developed the cascade theory of cosmic showers, in 1938 he made the first calculation of the neutron star model, in 1939 he predicted the existence of "black holes".

    Oppenheimer owns a number of popular books, including - Science and everyday knowledge (Science and the Common Understanding, 1954), Open Mind (The Open Mind, 1955), Some Reflections on Science and Culture (Some Reflections on Science and Culture, 1960) . Oppenheimer died in Princeton on February 18, 1967.

    Work on nuclear projects in the USSR and the USA began simultaneously. In August 1942, a secret "Laboratory No. 2" began to work in one of the buildings in the courtyard of Kazan University. Igor Kurchatov was appointed its leader.

    IN Soviet times it was claimed that the USSR solved its atomic problem completely independently, and Kurchatov was considered the "father" of the domestic atomic bomb. Although there were rumors about some secrets stolen from the Americans. And only in the 90s, 50 years later, one of the main characters then, Yuli Khariton, spoke about the significant role of intelligence in accelerating the laggard Soviet project. And American scientific and technical results were obtained by Klaus Fuchs, who arrived in the English group.

    Information from abroad helped the country's leadership to make a difficult decision - to start work on nuclear weapons during the most difficult war. Intelligence allowed our physicists to save time, helped to avoid a "misfire" during the first atomic test, which was of great political importance.

    In 1939, a chain reaction of fission of uranium-235 nuclei was discovered, accompanied by the release of colossal energy. Shortly thereafter, articles on nuclear physics began to disappear from the pages of scientific journals. This could indicate a real prospect of creating an atomic explosive and weapons based on it.

    After the discovery by Soviet physicists of the spontaneous fission of uranium-235 nuclei and the determination of the critical mass for residency on the initiative of the head of the scientific and technological revolution

    L. Kvasnikov, a corresponding directive was sent out.

    In the FSB of Russia (the former KGB of the USSR), 17 volumes of archival file No. 13676, which documented who and how attracted US citizens to work for Soviet intelligence, lie under the heading "keep forever" under the heading "keep forever". Only a few of the top leadership of the KGB of the USSR had access to the materials of this case, the classification of which was removed only recently. The first information about the work on the creation of the American atomic bomb Soviet intelligence received in autumn 1941. And already in March 1942, extensive information about the ongoing research in the United States and England fell on the table of I.V. Stalin. According to Yu. B. Khariton, in that dramatic period it was more reliable to use the bomb scheme already tested by the Americans for our first explosion. “Taking into account the interests of the state, any other decision was then unacceptable. The merit of Fuchs and our other assistants abroad is undoubted. However, we implemented the American scheme in the first test not so much from technical as from political considerations.

    The announcement that the Soviet Union had mastered the secret of nuclear weapons aroused in the US ruling circles a desire to unleash a preventive war as soon as possible. The Troyan plan was developed, which provided for the start fighting January 1, 1950. At that time, the United States had 840 strategic bombers in combat units, 1350 in reserve and over 300 atomic bombs.

    A test site was built near the city of Semipalatinsk. Exactly at 7:00 am on August 29, 1949, the first Soviet nuclear device under the code name "RDS-1".

    The Troyan plan, according to which atomic bombs were to be dropped on 70 cities of the USSR, was thwarted due to the threat of a retaliatory strike. The event that took place at the Semipalatinsk test site informed the world about the creation of nuclear weapons in the USSR.

    Foreign intelligence not only drew the attention of the country's leadership to the problem of creating atomic weapons in the West and thereby initiated similar work in our country. Thanks to information from foreign intelligence, according to academicians A. Aleksandrov, Yu. Khariton and others, I. Kurchatov did not make big mistakes, we managed to avoid dead ends in the creation of atomic weapons and create an atomic bomb in the USSR in a shorter time, in just three years , while the United States spent four years on it, spending five billion dollars on its creation.

    As Academician Yu. Khariton noted in an interview with the Izvestiya newspaper on December 8, 1992, the first Soviet atomic charge was made according to the American model with the help of information received from K. Fuchs. According to the academician, when government awards were presented to participants in the Soviet atomic project, Stalin, satisfied that there was no American monopoly in this area, remarked: “If we were late for one to a year and a half, then we would probably try this charge on ourselves.” ".

    The appearance of such a powerful weapon as a nuclear bomb was the result of the interaction of global factors of an objective and subjective nature. Objectively, its creation was caused by the rapid development of science, which began with the fundamental discoveries of physics in the first half of the 20th century. The strongest subjective factor was the military-political situation of the 40s, when the countries of the anti-Hitler coalition - the USA, Great Britain, the USSR - tried to get ahead of each other in the development of nuclear weapons.

    Prerequisites for the creation of a nuclear bomb

    The starting point of the scientific path to the creation of atomic weapons was 1896, when the French chemist A. Becquerel discovered the radioactivity of uranium. It was the chain reaction of this element that formed the basis for the development of terrible weapons.

    At the end of the 19th and in the first decades of the 20th century, scientists discovered alpha, beta, gamma rays, discovered many radioactive isotopes of chemical elements, the law of radioactive decay, and laid the foundation for the study of nuclear isometry. In the 1930s, the neutron and positron became known, and the nucleus of the uranium atom with the absorption of neutrons was first split. This was the impetus for the creation of nuclear weapons. The French physicist Frédéric Joliot-Curie was the first to invent and patent the design of the nuclear bomb in 1939.

    As a result further development nuclear weapon has become a historically unprecedented military-political and strategic phenomenon capable of ensuring the national security of the owner state and minimizing the capabilities of all other weapons systems.

    The design of an atomic bomb consists of a number of different components, among which there are two main ones:

    • frame,
    • automation system.

    Automation, together with a nuclear charge, is located in a case that protects them from various influences (mechanical, thermal, etc.). The automation system controls that the explosion occurs at a strictly set time. It consists of the following elements:

    • emergency detonation;
    • safety and cocking device;
    • power supply;
    • charge detonation sensors.

    The delivery of atomic charges is carried out with the help of aviation, ballistic and cruise missiles. At the same time, nuclear munitions can be an element of a land mine, torpedo, aerial bombs, etc.

    Nuclear bomb detonation systems are different. The simplest is the injection device, in which the impetus for the explosion is hitting the target and the subsequent formation of a supercritical mass.

    Another characteristic of atomic weapons is the size of the caliber: small, medium, large. Most often, the power of the explosion is characterized in TNT equivalent. A small caliber nuclear weapon implies a charge capacity of several thousand tons of TNT. The average caliber is already equal to tens of thousands of tons of TNT, large - measured in millions.

    Operating principle

    The scheme of the atomic bomb is based on the principle of using nuclear energy released during the chain nuclear reaction. This is the process of fission of heavy or synthesis of light nuclei. Due to the release of a huge amount of intra-nuclear energy in the shortest period of time, a nuclear bomb is classified as a weapon of mass destruction.

    There are two key points in this process:

    • the center of a nuclear explosion, in which the process directly takes place;
    • the epicenter, which is the projection of this process onto the surface (land or water).

    At nuclear explosion an amount of energy is released that, when projected onto the ground, causes seismic shocks. The range of their propagation is very large, but significant harm environment applied at a distance of only a few hundred meters.

    Nuclear weapons have several types of destruction:

    • light emission,
    • radioactive contamination,
    • shockwave,
    • penetrating radiation,
    • electromagnetic impulse.

    A nuclear explosion is accompanied by a bright flash, which is formed due to the release of a large amount of light and thermal energy. The strength of this flash is many times greater than the power of the sun's rays, so the danger of light and heat damage extends for several kilometers.

    Another very dangerous factor in the impact of a nuclear bomb is the radiation generated during the explosion. It works only for the first 60 seconds, but has a maximum penetrating power.

    The shock wave has a high power and a significant destructive effect, therefore, in a matter of seconds, it causes great harm to people, equipment, and buildings.

    Penetrating radiation is dangerous for living organisms and is the cause of radiation sickness in humans. electromagnetic pulse hits only the technique.

    All these types of damage combined make the atomic bomb a very dangerous weapon.

    First nuclear bomb tests

    The United States was the first to show the greatest interest in atomic weapons. At the end of 1941, huge funds and resources were allocated in the country for the creation of nuclear weapons. The work resulted in the first tests of an atomic bomb with an explosive device "Gadget", which took place on July 16, 1945 in US state New Mexico.

    It is time for the US to act. For the victorious end of the Second World War, it was decided to defeat the ally of Nazi Germany - Japan. The Pentagon selected targets for the first nuclear strikes, where the US wanted to demonstrate how powerful weapons they have.

    On August 6 of the same year, the first atomic bomb under the name "Kid" was dropped on the Japanese city of Hiroshima, and on August 9, a bomb with the name "Fat Man" fell on Nagasaki.

    The hit in Hiroshima was considered ideal: a nuclear device exploded at an altitude of 200 meters. The blast wave overturned the stoves in the houses of the Japanese, heated by coal. This has led to numerous fires even in urban areas far from the epicenter.

    The initial flash was followed by a heat wave impact that lasted seconds, but its power, covering a radius of 4 km, melted tiles and quartz in granite slabs, incinerated telegraph poles. After the heat wave came the shock wave. The wind speed was 800 km / h, and its gust demolished almost everything in the city. Of the 76,000 buildings, 70,000 were completely destroyed.

    A few minutes later, a strange rain of large black drops began to fall. It was caused by condensation formed in the colder layers of the atmosphere from steam and ash.

    People affected by fireball at a distance of 800 meters, were burned and turned into dust. Some had their burnt skin torn off by the shock wave. Drops of black radioactive rain left incurable burns.

    The survivors fell ill with a previously unknown disease. They began to experience nausea, vomiting, fever, bouts of weakness. The level of white cells in the blood dropped sharply. These were the first signs of radiation sickness.

    3 days after the bombing of Hiroshima, a bomb was dropped on Nagasaki. It had the same power and caused similar effects.

    Two atomic bombs killed hundreds of thousands of people in seconds. The first city was practically wiped off the face of the earth by the shock wave. More than half of the civilians (about 240 thousand people) died immediately from their wounds. Many people were exposed to radiation, which led to radiation sickness, cancer, infertility. In Nagasaki, 73 thousand people were killed in the first days, and after a while another 35 thousand inhabitants died in great agony.

    Video: nuclear bomb tests

    RDS-37 tests

    Creation of the atomic bomb in Russia

    The consequences of the bombing and the history of the inhabitants of Japanese cities shocked I. Stalin. It became clear that the creation of their own nuclear weapons is a question national security. On August 20, 1945, the Atomic Energy Committee began its work in Russia, headed by L. Beria.

    Nuclear physics research has been carried out in the USSR since 1918. In 1938, a commission was set up at the Academy of Sciences for atomic nucleus. But with the outbreak of war, almost all work in this direction was suspended.

    In 1943 Soviet intelligence officers handed over from England closed scientific papers on atomic energy, from which it followed that the creation of the atomic bomb in the West had advanced far ahead. At the same time, in the United States, reliable agents were introduced into several American nuclear research centers. They passed information on the atomic bomb to Soviet scientists.

    The terms of reference for the development of two variants of the atomic bomb were compiled by their creator and one of the scientific leaders Yu. Khariton. In accordance with it, it was planned to create an RDS (“special jet engine”) with an index of 1 and 2:

    1. RDS-1 - a bomb with a charge of plutonium, which was supposed to undermine by spherical compression. His device was handed over by Russian intelligence.
    2. RDS-2 is a cannon bomb with two parts of a uranium charge, which must approach each other in the cannon barrel until a critical mass is created.

    In the history of the famous RDS, the most common decoding - "Russia does it itself" - was invented by Yu. Khariton's deputy for scientific work K. Shchelkin. These words very accurately conveyed the essence of the work.

    Information that the USSR had mastered the secrets of nuclear weapons caused an impulse in the USA to start a pre-emptive war as soon as possible. In July 1949, the Trojan plan appeared, according to which it was planned to start hostilities on January 1, 1950. Then the date of the attack was moved to January 1, 1957, with the condition that all NATO countries enter the war.

    Information received through intelligence channels accelerated the work of Soviet scientists. According to Western experts, Soviet nuclear weapons could not have been created before 1954-1955. However, the test of the first atomic bomb took place in the USSR at the end of August 1949.

    On August 29, 1949, the RDS-1 nuclear device was blown up at the Semipalatinsk test site - the first Soviet atomic bomb, which was invented by a team of scientists headed by I. Kurchatov and Yu. Khariton. The explosion had a power of 22 kt. The design of the charge imitated the American "Fat Man", and the electronic filling was created by Soviet scientists.

    The Trojan plan, according to which the Americans were going to drop atomic bombs on 70 cities in the USSR, was thwarted due to the likelihood of a retaliatory strike. The event at the Semipalatinsk test site informed the world that the Soviet atomic bomb ended the American monopoly on the possession of new weapons. This invention completely destroyed the militaristic plan of the USA and NATO and prevented the development of the Third World War. started new story- the era of world peace, existing under the threat of total destruction.

    "Nuclear club" of the world

    Nuclear club - symbol several states possessing nuclear weapons. Today there are such weapons:

    • in the USA (since 1945)
    • in Russia (originally USSR, since 1949)
    • in the UK (since 1952)
    • in France (since 1960)
    • in China (since 1964)
    • in India (since 1974)
    • in Pakistan (since 1998)
    • in North Korea (since 2006)

    Israel is also considered to have nuclear weapons, although the country's leadership does not comment on its presence. In addition, on the territory of NATO member states (Germany, Italy, Turkey, Belgium, the Netherlands, Canada) and allies (Japan, South Korea, despite the official refusal) is a US nuclear weapon.

    Kazakhstan, Ukraine, Belarus, which owned part of the nuclear weapons after the collapse of the USSR, in the 90s handed it over to Russia, which became the sole heir to the Soviet nuclear arsenal.

    Atomic (nuclear) weapons are the most powerful tool of global politics, which has firmly entered the arsenal of relations between states. On the one hand, it is effective tool intimidation, on the other hand, a weighty argument for preventing military conflict and strengthening peace between the powers that own these weapons. This is a symbol of an entire era in the history of mankind and international relations, which must be handled very wisely.

    Video: nuclear weapons museum

    Video about the Russian Tsar Bomba

    If you have any questions - leave them in the comments below the article. We or our visitors will be happy to answer them.



If you find an error, please select a piece of text and press Ctrl+Enter.