Компенсация реактивной мощности для дома. Компенсаторы реактивной мощности. Общие вопросы теории

Экономия энергоносителей – одна из главных задач современной цивилизации. Все больше статей появляется в интернете об экономии электроэнергии методом компенсации Действительно, для промышленных предприятий данный процесс актуален, так как экономит денежные средства. Довольно много людей начинает задумываться, если промышленные предприятия экономят на реактивной составляющей, возможна ли экономия на этом в быту, путем компенсации реактивной составляющей в мастерской, на даче или в квартире.

Я наверное вас разочарую – это невозможно сделать, по нескольким причинам:

  1. , которые устанавливаются для частных потребителей, ведут учет только активной мощности;
  2. Учет за реактивной составляющей ведется только на больших промышленных предприятиях, для частных потребителей этот учет не ведется;
  3. Такая энергия не выполняет абсолютно никакой полезной работы, а только греет провода и другие устройства;

Да, в бытовых условиях возможна установка фильтров, это снизит суммарный ток в цепи, уменьшит падение напряжения. При пуске устройств большой мощности (пылесосы, холодильники) бытовые компенсаторы реактивной мощности снижают пусковой ток. Довольно просто собрать компенсатор реактивной мощности своими руками в домашних условиях. Для этого необходимо рассчитать реактивную мощность для однофазного устройства:

Для этого вам необходимо произвести замеры напряжения и тока цепи. Как найти cosφ? Очень просто:

Р – активная мощность устройства (указывается на самом устройстве)

f- частота сети.

Подбираем конденсаторы для бытового компенсатора реактивной мощности по емкости, напряжению, роду тока. Конденсаторы вешаются параллельно нагрузке.

Снижение суммарного тока снизит нагрев и позволит максимально использовать мощность цепи. Но, на промышленных предприятиях cosφ строго регламентирован, и контролируется в большинстве случаев автоматически, то есть при выводе какого-либо устройства с работы cosφ все равно поддерживается в заданном диапазоне. Представьте, что вы рассчитали в вашей квартире, сделали компенсатор и подключили в цепь. Но через некоторое время отключился потребитель (например, холодильник) и баланс сети нарушился. Теперь вы не компенсируете, а генерируете реактивную энергию обратно в сеть, тем самым негативно влияя на работу других потребителей. Для того чтобы сохранять баланс необходимо постоянно следить за работой различных устройств. В быту автоматизировать данный процесс слишком дорого и лишено смысла, так как это не позволит вам вернуть деньги даже за компенсатор.

Можно сделать вывод что компенсация реактивной мощности в быту бессмысленна, так как не позволит сэкономить средства, а установка нерегулируемого компенсатора может привести к перекомпенсации и как следствие только ухудшить коэфициент мощности сети cosφ.

Если вы хотите экономить электроэнергию следует пользоваться старыми надежными способами:

  1. Покупать бытовую технику класса А или В;
  2. Выключать свет и бытовые приборы (исключение холодильник) когда уходите из дома;
  3. Заменить лампы накаливания на энергосберегающие. Они и служат дольше и потребляют меньше;
  4. Если пользуетесь электрочайником – кипятите столько воды, сколько требуется, это существенно снизит потребляемую им энергию;
  5. Чистить фильтр пылесоса для улучшения тяги и снижения энергопотребления;
  6. Утепляйте помещения для минимального использования электрических обогревателей.

На видео показан бытовой компенсатор реактивной мощности своими руками

На видео используется бытовой компенсатор в виде блока конденсаторных батарей

Нагрузка предприятий подразделяется на активную, индуктивную и емкостную, все эти виды мощностей зависят от типа работающего оборудования.

Существование реактивной энергии несет отрицательное воздействие на электрические сети, создает электромагнитные поля в электрических устройствах.

Существование реактивного тока создает дополнительную нагрузку, приводящую к снижению качества электроэнергии, влекущую увеличение сечений токовых проводников.

Назначение устройства компенсации реактивной мощности

Основным предназначением устройства является снижение действия , служит для увеличения и поддержания на определенном нормативном уровне величины коэффициента мощности в трехфазных распределительных сетях. Главное предназначение УКРМ, является аккумуляция в конденсаторах реактивной мощности. Это действие помогает разгрузить электрическую сеть от перетоков реактивной мощности, происходит стабилизация напряжения, увеличивается доля активной мощности.

Основные функции УКРМ

  1. Понижение потребляемого нагрузочного тока на 30-50%.
  2. Снижение составляющих элементов распределительной сети, увеличение их срока службы.
  3. Повышение надежности и пропускной способности электрической сети.
  4. Понижение тепловых потерь электрического тока.
  5. Снижение воздействия высших гармоник.
  6. Понижение несимметричности фаз, сглаживание сетевых помех.
  7. Снижение до минимума стоимости индуктивной мощности.

Установка компенсации реактивной мощности УКРМ отличается рядом преимуществ, обусловленных применением конденсаторов, дополненных третьим уровнем безопасности в виде полипропиленовой сегментируемой пленки пропитанной специальной жидкостью, обеспечивающих надежное использование, долговечность, невысокую стоимость при выполнении работ по техническому обслуживанию и ремонту.

Наличие в конденсаторной установке УКРМ специализированных тиристорных быстродействующих пускателей, работающих с опережением по времени для коммутации фазовых конденсаторов, срабатывающих при изменении cosφ, продляет время их безотказной работы.

Для обеспечения регулирования cosj в автоматическом режиме с передачей информации на PC с контролем в сети высших гармоник тока и напряжения, применяются контроллеры с контакторным переключением.

Для повышения качества работы УКРМ в установке присутствует фильтр нечетных гармоник и устройства терморегуляции, для обнаружения неисправностей продумана система индикации.

Все оборудование помещается в блок-контейнер, снабженный вентиляцией и обогревом с автоматическим управлением. Устройства обеспечивают комфортное и удобное обслуживание при низких температурах до -60 о С.

Модульный тип построения, способствует поэтапному наращиванию мощности УКРМ.

Защита конденсаторных установок

Для безопасной работы устройства предусмотрены защиты:

  1. Блокировки, обеспечивающие защиту от прикосновения к токоведущим частям, находящимся под напряжением.
  2. Защита, предохраняющая установку от короткого замыкания конденсатора.
  3. От превышения нормы электрического тока.
  4. От перенапряжения.
  5. От перекоса токов по фазам устройства.
  6. Электромагнитное блокирование, предохраняющее от ошибочного включения коммутационных аппаратов УКРМ.
  7. Механическое блокирование включения заземляющих ножей в работающей установке.
  8. Наличие контактного выключателя, отключающего установку при открывании дверей при включенном оборудовании.
  9. Тепловая защита, включающая принудительное охлаждение при повышении температуры конденсаторных батарей.
  10. Термодатчик включающий обогрев в установке при понижении температуры.

Достоинства устройства конденсаторной установки УКРМ

  1. Наличие трехфазных пожарозащищенных экологических конденсаторов.
  2. Применение в устройстве специальных предохранителей и разрядников сопротивления с обкладками из полимерной металлизированной пленки с минеральной пропиткой.
  3. Регуляторы реактивной мощности и цифровые анализаторы с дистанционным управлением.
  4. Для повышения сейсмоустойчивости и вибрационной стойкости применяются специальные полимерные изоляторы.

Типы УКРМ

Существуют несколько типов установок УКРМ, применяемых в сетях 6-10 кВ, это:

  1. Нерегулируемые установки, выполненные в модульном построении, состоящем из нескольких фиксированных ступеней,коммутация происходит в ручном режиме при отсутствии токов нагрузки.
  2. Автоматические или регулируемые, базовое устройство предназначено для автоматического регулирования ступеней, каждая из которых состоит из трех конденсаторов, соединенных в звезду, операции по осуществлению коммутационных действий производят автоматически с использованием электронного блока, определяющего мощность и время включения.
  3. Полуавтоматические установки применяются для снижения стоимости устройства компенсации реактивной мощности, цена становится доступной с одновременным сохранением качества работы устройства. Для этого в устройстве применяются, как регулированные ступени, так и фиксированные.
  4. Высоковольтные установки с фильтрами, применяемыми для защиты от нелинейных гармонических искажений защитных антирезонансных дросселей. Применяются такие установки совместно с устройствами, генерирующими явление в сети высших гармоник, это: устройства, обеспечивающие плавный пуск и частотные преобразователи.

В модульных установках КРМ ступени конструктивно объединены в модуль

Особенности подключения УКРМ

Самым оптимальным подключением устройства компенсации реактивной мощности, является установка устройства в непосредственной близости к потребителю (индивидуальная компенсация). В этом случае, стоимость установки компенсации реактивной мощности, состоящая из суммы стоимости внедрения и дальнейшего обслуживания составляет значительную величину.

При объединении нагрузок в единый комплекс по потреблению реактивной мощности, целесообразно применять групповую компенсацию. В этом случае применение цена устройства реактивной мощности становится наиболее приемлемой при внедрении в работу, но менее выгодной для пользователей из-за понижения активных потерь, в электрической сети оказывающих влияние на экономию средств.

Возможно, подключение устройства КРМ в виде отдельного оборудования с индивидуальным кабельным вводом, так и в составе НКУ, к примеру, в составе главного распределительного щита.

Расчет УКРМ

Для выбора УКРМ производится подсчет полной суммарной мощности конденсаторных батарей электроустановки, по формуле:

Qc = Px (tg(1)-tg(ф2)).

Где Р – активная мощность электроустановки
Показания (tg(ф1) -tg(ф2)) находятся по данным cos(ф1) и cos(ф2)
Значение cos(ф1) коэффициента мощности до установки УКРМ
Значение cos(ф2) коэффициента мощности после установки УКРМ, задается электроснабжающим предприятием.

Формула мощности приобретает такой вид:

k- табличный коэффициент, соответствующий значениям коэффициента мощности cos(ф2)

Мощность УКРМ определяется конкретно для всех участков электрической сети в зависимости от характера нагрузки и способа компенсации.

Только после проведенного в полной мере анализа показателей, полученных при диагностике данных, появляется возможность выбора регулируемых или нерегулируемых УКРМ.

Обозначается степень дробления мощности по ступеням, время и скорость повторного срабатывания ступеней, выявляется необходимость использования в конденсаторной установке компенсации реактивной мощности для снижения коэффициента несинусоидальности в питающей сети, фильтрации нечетных гармоник, а также отсутствие эффекта резонанса. Это обеспечивает качество электроэнергии.

Необходимо знать, что нельзя производить полную компенсацию реактивной мощности до единицы, это приводит к перекомпенсации, которая может произойти в результате непостоянного значения активной мощности потребителя, а также в результате случайных факторов. Желательное значение cosф2 от 0,90 до 0,95.

Реактивная мощность и энергия, реактивный ток, компенсация реактивной мощности

Реактивная мощность и энергия ухудшают показатели работы энергосистемы , то есть загрузка реактивными токами генераторов электростанций увеличивает расход топлива; увеличиваются потери в подводящих сетях и приемниках, увеличивается падение напряжения в сетях.

Реактивный ток дополнительно нагружает линии электропередачи , что приводит к увеличению сечений проводов и кабелей и соответственно к увеличению капитальных затрат на внешние и внутриплощадочные сети.

Компенсация реактивной мощности , в настоящее время, является немаловажным фактором позволяющим решить вопрос энергосбережения практически на любом предприятии.

По оценкам отечественных и ведущих зарубежных специалистов, доля энергоресурсов, и в частности электроэнергии занимает величину порядка 30-40% в стоимости продукции. Это достаточно веский аргумент, чтобы руководителю со всей серьезностью подойти к анализу и аудиту энергопотребления и выработке методики компенсации реактивной мощности . Компенсация реактивной мощности – вот ключ к решению вопроса энергосбережения.

Потребители реактивной мощности

Основные потребители реактивной мощности - , которые потребляют 40 % всей мощности совместно с бытовыми и собственными нуждами; электрические печи 8 %; преобразователи 10 %; трансформаторы всех ступеней трансформации 35 %; линии электропередач 7 %.

В электрических машинах переменный магнитный поток связан с обмотками. Вследствие этого в обмотках при протекании переменного тока индуктируются реактивные э.д.с. обуславливающие сдвиг по фазе (fi) между напряжением и током. Этот сдвиг по фазе обычно увеличивается, а уменьшается при малой нагрузке. Например, если косинус фи двигателей переменного тока при полной нагрузке составляет 0,75-0,80, то при малой нагрузке он уменьшится до 0,20-0,40 .

Малонагруженные трансформаторы также имеют низкий (косинус фи). Поэтому, применять компенсацию реактивной мощности, то результирующий косинус фи энергетической системы будет низок и ток нагрузки электрической, без компенсации реактивной мощности, будет увеличиваться при одной и той же потребляемой из сети активной мощности. Соответственно при компенсации реактивной мощности (применении автоматических конденсаторных установок КРМ) ток потребляемый из сети снижается, в зависимости от косинус фи на 30-50%, соответственно уменьшается нагрев проводящих проводов и старение изоляции.

Кроме этого, реактивная мощность наряду с активной мощностью учитывается поставщиком электроэнергии , а следовательно, подлежит оплате по действующим тарифам, поэтому составляет значительную часть счета за электроэнергию.

Структура потребителей реактивной мощности в сетях энергосистем (по установленной активной мощности):


Прочие преобразователи: переменного тока в постоянный, тока промышленной частоты в ток повышенной или пониженной частоты, печная нагрузка (индукционные печи, дуговые сталеплавильные печи), сварка (сварочные трансформаторы, агрегаты, выпрямители, точечная, контактная).

Суммарные абсолютные и относительные потери реактивной мощности в элементах питающей сети весьма велики и достигают 50% мощности, поступающей в сеть. Примерно 70 - 75% всех потерь реактивной мощности составляют потери в трансформаторах.

Так, в трехобмоточном трансформаторе ТДТН-40000/220 при коэффициенте загрузки, равном 0,8, потери реактивной мощности составляют около 12%. На пути от электростанции происходит самое меньшее три трансформации напряжения, и поэтому потери реактивной мощности в трансформаторах и автотрансформаторах достигают больших значений.

Способы снижения потребления реактивной мощности. Компенсация реактивной мощности

Наиболее действенным и эффективным способом снижения потребляемой из сети реактивной мощности является применение установок компенсации реактивной мощности (конденсаторных установок) .

Использование конденсаторных установок для компенсации реактивной мощности позволяет:

  • разгрузить питающие линии электропередачи, трансформаторы и распределительные устройства;
  • снизить расходы на оплату электроэнергии
  • подавить сетевые помехи, снизить несимметрию фаз;
  • сделать распределительные сети более надежными и экономичными.

Используя электричество, мы задействуем активную и реактивную энергию. Приносить пользу способна только активная энергия, она всегда преобразуется в блага, в которых нуждаются люди. Реактивная энергия задерживается в сетях, она участвует в создании электромагнитных полей. Такие процессы можно наблюдать в трансформаторах, электродвигателях и других востребованных типах оборудования. Неиспользуемая энергия не исчезает бесследно, она создает дополнительную нагрузку на всю сеть, тем самым провоцируя потери активной энергии. В итоге пользователь получает двойные потери, которых можно было бы избежать, используя регулятор и компенсатор реактивной мощности.

Потери в сетях происходят по различным причинам, но основной проблемой выступает реактивная энергия в проводящих сетях. Компенсация реактивной мощности для владельцев предприятий и представителей ЖКХ в обязательном порядке проводиться с помощью установки регуляторов реактивной мощности, ведь потребление энергии на масштабных объектах доходит до максимального уровня.

Ассортимент компании «РУСЭЛТ»

Компания «РУСЭЛТ» занимается разработкой и выпуском сертифицированной продукции, которая соответствует европейским стандартам качества и надежности. ТУ 3114-017-55978767-09 служит подтверждением нашей компетентности и ответственности. В компании представлены модели укрм:

  • КРМ-0,4 – применяются для автоматического и ручного регулирования мощности (от 20 до 1000 кВар);
  • КРМ-Ф – выполняют функцию компенсации и фильтрации (от 20 до 1000 кВар);
  • КРМ-MINI (КРМ-М) – применимы для сетей, имеют управляемый тип (20, 30, 40 кВар).

Почему используются компенсаторы?

Выделяют ряд преимуществ использования компенсаторов и регуляторов реактивной мощности:

  • снижение затрат электроэнергии до тридцати процентов;
  • продление срока службы трансформаторного и другого специального оборудования, сохранение целостности оборудования;
  • снижение электрической нагрузки в сетях и кабелях соединения;
  • продление срока службы коммутационного оборудования;
  • исключение штрафов и других наказаний со стороны государственных органов;
  • сокращение риска возникновения помех в сетях.

Производитель «РУСЭЛТ» использует в работе современные технологии оборудования для экономии энергоресурсов.Мы стремимся удовлетворить запросы потребителей, поэтому расширяем и совершенствуем ассортимент товаров.

Навязчивая реклама в интернете и даже на государственных каналах телевидения через телемагазин настойчиво предлагает населению устройство для экономии электроэнергии в виде «новинок» электронной промышленности. Пенсионерам предоставляется скидка 50 % от общей стоимости.

«Saving Box» — так называется один из предлагаемых приборов. О них уже писалось в статье . Пришла пора продолжить тему на примере конкретной модели, объяснив более подробно:

    что такое реактивное сопротивление;

    каким образом создается активная и реактивная мощность;

    как осуществляется компенсация реактивной мощности;

    на основе чего работают компенсаторы реактивной мощности и устройство для экономии электроэнергии.

Людям, купившим такое устройство, приходит по почте посылка с красивой коробочкой. Внутри расположен элегантный пластмассовый корпус с двумя светодиодами на лицевой стороне и вилкой для установки в розетку — с обратной.

Чудо-прибор для экономии электроэнергии (для увеличения нажмите на рисунок):

На приложенной фотографии показаны заявленные производителем характеристики: 15000 Вт при напряжении в сети от 90 до 250 В. Оценим их с точки зрения электрика-практика по приведенным под картинками формулам.

При наименьшем указанном напряжении такое устройство должно пропускать через себя ток 166,67 А, а при 250 В — 60 А. Сравним полученные расчеты с нагрузками сварочных аппаратов переменного напряжения.

Ток сварки для стальных электродов диаметром 5 мм составляет 150÷220 ампер, а для толщины 1,6 мм достаточно — 35÷60 А. Эти рекомендации есть в любом справочнике электросварщика.

Вспомните вес и габариты сварочного аппарата, который варит электродами 5 мм. Сравните их с пластмассовой коробочкой, величиной с зарядное устройство мобильного телефона. Подумайте, почему от тока 150 А плавятся стальные электроды 5 мм, а остаются целыми контакты вилки этого «прибора», да и вся проводка в квартире?

Чтобы понять причину такого несоответствия, пришлось вскрыть корпус, показав «внутренности» электроники. Там кроме платы для подсветки светодиодов и предохранителя размещена еще одна пластиковая коробочка, для бутафории.

Внимание! В этой схеме отсутствует устройство для экономии электроэнергии или ее компенсации.

Неужели обман? Попробуем разобраться с помощью основ электротехники и действующих промышленных компенсаторов электроэнергии, работающих на предприятиях энергетики.

Принципы электроснабжения

Рассмотрим типовую схему подключения к генератору переменного напряжения потребителей электричества, как маленький аналог питающей электросети квартиры. Для наглядности его характеристик индуктивности, емкости и активной нагрузки показаны , и . Будем считать, что они работают в установившемся режиме при прохождении по всему контуру тока одной величины I.

Электрическая схема (для увеличения нажмите на рисунок):

Здесь энергия генератора с напряжением U распределится составными частями на:

    обмотку индуктивности UL;

    обкладки конденсатора UC;

    активное сопротивление ТЭН UR.

Если представить рассматриваемые величины векторной формой и выполнить их геометрическое сложение в полярной системе координат, то получится обыкновенный треугольник напряжений, в котором величина активной составляющей UR по направлению совпадает с вектором тока.

UХ образован сложением падений напряжений на обмотке индуктивности UL и обкладках конденсатора UС. Причем это действие учитывает их направление.

В итоге получилось, что вектор напряжения генератора U отклонен от направления тока I на угол φ.

Еще раз обратите внимание на то, что ток в цепи I не меняется, он одинаков на всех участках. Поэтому разделим составляющие треугольника напряжений на величину I. На основании закона Ома получим треугольник сопротивлений.

Общее сопротивление индуктивности XL и емкости ХС принято называть термином «реактивное сопротивление» Х. Приложенное к клеммам генератора полное сопротивление нашей цепи Z состоит из суммы активного сопротивления ТЭН R и реактивного значения Х.

Выполним другое действие — умножение векторов треугольника напряжений на I. В итоге преобразований формируется треугольник мощностей. Активная и у него создают полную приложенную величину. Суммарная энергия, выдаваемая генератором S, расходуется на активную Р и реактивную Q составляющие.

Активная часть расходуется потребителями, а реактивная выделяется при магнитных и электрических преобразованиях. Емкостные и индуктивные мощности потребителями не используются, но нагружают токопроводы с генераторами.

Внимание! Во всех 3-х прямоугольных треугольниках сохраняются пропорции между сторонами, а угол φ не меняется.

Теперь будем разбираться, как проявляется реактивная энергия и почему счетчики бытовые ее не учитывали.

Что такое компенсация реактивной мощности в промышленности?

В энергетике страны, а более точно — государств целого континента, производством электричества занято огромнейшее число генераторов. Среди них встречаются как простые самодельные конструкции мастеров-энтузиастов, так и мощнейшие промышленные установки ГЭС и атомных станций.

Вся их энергия суммируется, трансформируется и распределяется конечному потребителю по сложнейшим технологиям и транспортным магистралям на огромные расстояния. При таком способе передачи электрический ток проходит через большое количество индуктивностей в виде обмоток трансформаторов/автотрансформаторов, реакторов, заградителей и других устройств, создающих индуктивную нагрузку.

Воздушные провода, а особенно кабели, создают в цепи емкостную составляющую. Ее величину добавляют различные конденсаторные установки. Металл проводов, по которым протекает ток, обладает активным сопротивлением.

Таким образом, сложнейшая энергетическая система может быть упрощена до рассмотренной нами схемы из генератора, индуктивности, активной нагрузки и емкости. Только ее необходимо еще объединить в три фазы.

Задача энергетики — дать потребителю качественное электричество. Применительно к конечному объекту это подразумевает подачу на вводной щиток электроэнергии напряжением 220/380 В, частотой 50 Гц с отсутствием помех и реактивных составляющих. Все отклонения этих величин ограничены требованиями ГОСТ.

При этом потребителя интересует не реактивная составляющая Q, создающая дополнительные потери, а получение активной мощности Р, которая совершает полезную работу. Для характеристики качества электричества пользуются безразмерным отношением Р к приложенной энергии S, для чего применяется косинус угла φ. Активную мощность Р учитывают все бытовые электрические счетчики.

Устройства компенсации электрической мощности приводят в норму электроэнергию для распределения между потребителями, уменьшают до нормы реактивные составляющие. При этом также осуществляется «выравнивание» синусоид фаз, в которых убираются частотные помехи, сглаживаются последствия переходных процессов при коммутациях схем, нормализуется частота.

Промышленные компенсаторы реактивной мощности устанавливаются после вводов трансформаторных подстанций перед распределительными устройствами: через них пропускается полная мощность электроустановки. Как пример, смотрите фрагмент однолинейной электросхемы подстанции в сети 10 кВ, где компенсатор принимает токи от АТ и только после его обработки электричество поступает дальше, а нагрузка на источники энергии и соединительные провода уменьшается.

Вернемся на мгновение к прибору «Saving Box» и зададим вопрос: как он может компенсировать мощности при расположении в конечной розетке, а не на вводе в квартиру перед счетчиком?

Смотрите на фото, как внушительно выглядят промышленные компенсаторы. Они могут создаваться и работать на разной элементной базе. Их функции:

    плавное регулирование реактивной составляющей с быстродействующей разгрузкой оборудования от перетоков мощностей и снижения потерь энергии;

    стабилизация напряжения;

    повышение динамической и статистической устойчивости схемы.

Выполнение этих задач обеспечивает надежность электроснабжения и уменьшение затрат на конструкцию тоководов нормализацией температурных режимов.

Что такое компенсация реактивной мощности в квартире?

Электроприборы домашней электрической сети также обладают индуктивным, емкостным и активным сопротивлением. Для них справедливы все соотношения рассмотренных выше треугольников, в которых присутствуют реактивные составляющие.

Только следует понимать, что они создаются при прохождении тока (учитываемого счетчиком, кстати) по уже подключенной в сеть нагрузке. Генерируемые индуктивные и емкостные напряжения создают соответствующие реактивные составляющие мощности в этой же квартире, дополнительно нагружают электропроводку.

Их величину никак не учитывает старый индукционный счетчик. А вот отдельные статические модели учета способны ее фиксировать. Это позволяет точнее анализировать ситуацию с токовыми нагрузками и термическим воздействием на изоляцию при работе большого количества электродвигателей. Емкостное напряжение, создаваемое бытовыми приборами, очень маленькое, как и ее реактивная энергия и счетчики ее часто не показывают.

Компенсация реактивной составляющей в таком случае заключается в подключении конденсаторных установок, «гасящих» индуктивную мощность. Они должны подключаться только в нужный момент на определенный промежуток времени и иметь свои коммутационные контакты.

Такие компенсаторы реактивной мощности имеют значительные габариты и подходят больше для производственных целей, часто работают с комплектом автоматики. Они никак не снижают потребление активной мощности, не могут сократить оплату электроэнергии.

Заключение

Заявленные производителем возможности и технические характеристики «Saving Box» не соответствуют действительности, используются для рекламы, построенной на обмане.

Обществу защиты прав потребителей и правоохранительным органам давно пора принять меры к прекращению продаж в стране некачественной продукции хотя бы через государственные каналы информации.



Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.