Состав и строение белков. Высшие уровни организации белков. Мономерами молекул ДНК являются

Строение, свойства и биологические функции белков.

Белки - неотъемлемые компоненты любой живой клетки, которые обеспечивают и поддерживают ее жизнедеятельность. Молекулы белков представляют собой биополимеры, построенные в основном из амино-кислот. Кроме аминокислот в состав белковых молекул могут входить другие органические и неорганические компоненты. В белках содержится 50-55% углерода, 20-24% кислорода, 7% водорода, 0,5-3% серы; в состав некоторых белков могут также входить фосфор и различные металлы.

Огромное структурное разнообразие белков и широкий диапазон изменения их физико-химических свойств позволяют этим биополимерам выполнять разнообразные и жизненно важные функции в живом организме. В каждой растительной клетке одновременно функционируют несколько тысяч различных белков. Все биохимические реакции в клетке происходят с участием каталитических белков - ферментов. Структурная основа биологических мембран цитоплазмы и внутриклеточных органоидов также построена с участием белков. Защитную функцию выполняют белковые антитела и стрессовые белки, образующиеся под воздействием стрессовых факторов. Важную роль выполняют в растительных клетках регуляторные и транспортные белки, способные обратимо изменять свою конформацию и таким образом активно участвовать в поддерживании жизнедеятельности растения как саморегулирующейся системы.

В семенах и других органах растений откладываются запасные бел-ки, которые в значительной степени определяют питательную, кормовую и технологическую ценность растительной продукции. Много белков на-капливается в зерне зернобобовых культур - 20-30%, в сое и люпине - 30-40%, в семенах масличных культур - 15-30%. Содержание белков в другой растительной продукции составляет, %: зерновки злаковых растений – 9-18; кукуруза и рис – 6-10; клубни картофеля – 1,5-2; корнеплоды – 1-1,5; овощи, плоды и ягоды – 0,5-2; цветная капуста – 2-3; брюссельская капуста и чеснок –6-8; вегетативная масса мятликовых трав – 5-15, бобовых трав – 15-25 (последние два показателя даны в расчёте на сухую массу).

Первый белковый препарат был выделен из пшеничной муки в 1728 году Я.Б.Беккари и назван клейковиной. В 1809-10 г.г. появились первые сведения об элементном составе, а в 1836 г. предложена первая эмпири-ческая формула белков. В дальнейшем довольно активно многими иссле-дователями проводилось изучение продуктов распада белковых веществ и появлялось все больше и больше сведений о том, что основными про-дуктами гидролитического разложения белков являются аминокислоты. К 1899 г. уже было известно 13 аминокислот, большинство из которых были идентифицированы как продукты гидролиза белков.


Основополагающий вклад в разработку теории строения белков внесли работы Э.Фишера, который в 1901 г. предположил и затем экспери-ментально обосновал положение о том, что белковые молекулы постро-ены из аминокислот, остатки которых соединены пептидными связями. Образующиеся таким путем полимеры обычно называют полипептидами, а учение о построении белковых молекул из аминокислот, соединенных пептидными связями, - полипептидной теорией строения белков .

В образовании пептидной связи участвуют α-аминокислоты, которые взаимодействуют своими аминными и карбоксильными группами, при этом высвобождаются молекулы воды. У диаминомонокарбоновых кислот пептидную связь может образовать только аминогруппа, находящаяся в α-по-ложении, а у моноаминодикарбоновых кислот - карбоксильная группа, имеющая в α-положении аминогруппу. Углеводородные радикалы амино-кислотных остатков, соединенных пептидными связями, остаются в виде боковых радикалов. Так, например, из аланина, аспарагиновой кислоты и лизина образуется трипептид:

Название пептида составляется из названий образующих его амино-кислот, при этом аминокислота, имеющая свободную карбоксильную группу, записывается в конце формулировки, а у других аминокислот окончание изменяют на "ил" и их перечисляют в названии пептида в том порядке, в котором они находятся в структурной формуле полученного соединения. В соответствии с этим выше представленный трипептид имеет название - аланиласпарагиллизин.

Методом рентгеноструктурного анализа показано, что атомные группировки пептидной связи расположены в одной плоскости, образуя преимущественно транс -конфигурацию относительно связи C-N, которая в значительной мере имеет характер двойной связи, и вращение вокруг этой связи сильно ограничено.

В целом пространственное построение полипептидной цепи можно представить как последовательность плоских структур, образуемых эле-ментами пептидной связи, которые соединены через α-углеродные атомы аминокислотных радикалов. Поскольку связи у α-углеродных атомов не являются двойными, вокруг них возможно вращение расположенных в плоскости пептидной связи группировок.

Если поменять порядок соединения аминокислот в пептиде, то мы получим несколько изомеров. Чаще всего в состав белковых полипепти-дов могут входить 100-400 аминокислотных остатков, которые, соединяясь пептидными связямми в определенном порядке, могут давать огромное число изомерных молекул, способных выполнять разнообразные биологи-ческие функции. В общем виде строение полипептида можно выразить следующей формулой:

В этой формуле аминокислотные остатки соединены связями -СО-NH-, которые и называют пептидными , а R 1 , R 2 , R 3 ...Rn - радикалы амино-кислотных остатков, содержащие различные группировки атомов и обра-зующие боковые ответвления в молекуле полипептида.

На противоположных концах полипептидной цепи имеются свобод-ная аминная и свободная карбоксильная группы, по которым определяют направленность полипептида. Аминокислота на конце полипептидной цепи, имеющая свободную аминогруппу в α-положении, называется N-концевой аминокислотой, а аминокислота на противоположном конце полипептида, имеющая свободную карбоксильную группу, не использованную для образования пептидной связи, - C-концевой аминокислотой. Определение N- и C-концевых аминокислот имеет важное значение для выяснения строения белковой молекулы, так как позволяет установить в ней число полипептидных цепей.

Большинство известных белков содержат в молекуле более одной полипептидной цепи и этим существенно отличаются от обычных пептидов, имеющих одну полипептидную цепь и более низкую молекулярную массу. Однако чёткую границу между пептидами и белками провести довольно трудно; и те, и другие имеют вполне определенную пространственную структуру и выполняют свою биохимическую функ-цию. Основными критериями следует считать степень полимерности молекулы, обеспечи-вающую ей необходимые коллоидные, осмотические, буферные и другие свойства, характерные для белков, а также способность формировать определённую пространственную структуру. Самая низкая степень полимерности известных белков составляет не менее 50 аминокислотных остатков в одной молекуле. Вместе с тем известны некоторые белки, молекулы которых насчитывают свыше тысячи аминокислотных остатков.

Пептиды в различных организмах очень часто синтезируются с по-мощью тех же механизмов, как и белки, и представляют собой важные промежуточные продукты обмена веществ, многие из них выполняют регуляторные функции и относятся к физиологически активным соеди-нениям. Однако известны пептиды, в синтезе которых принимают участие аминокислоты, не входящие в состав белков, они способны образовывать циклические структуры. К таким пептидам относятся антибиотики грами-цидин, циклоспорин, тироцидин и токсины бледной поганки. К пептидам, выполняющим регуляторные функции, относятся многие гормоны человека и животных (окситоцин, вазопрессин, адренокортикотропный гормон и некоторые другие).

Из растительных пептидов наиболее хорошо изучен глютатион, структура которого была выяснена в 1945 г. Ф.Гопкинсом. Молекула глю-татиона включает остатки трёх аминокислот - глутаминовой кислоты, цис-теина и глицина. Глицин и цистеин соединены пептидной связью, а цистеин и глутаминовая кислота - псевдопептидной (или изопептидной) связью, которая образуется при взаимодействии аминогруппы цистеина с карбоксильной группой глутаминовой кислоты, не имеющей в α –положе-нии аминогруппы и в составе белковых полипептидов обычно находящейся в составе бокового радикала.

H 2 N-CH-CH 2 -CH 2 -CO-NH-CH-CO-NH-CH 2 -COOH

глютатион

Высокая биологическая активность глютатиона обусловлена его спо-собностью участвовать в восстановительных реакциях, так как под дей-ствием фермента он может легко отщеплять водород от сульфгидрильной группы (-SH) и переходить в восстановленную форму, образуя димеры, связанные дисульфидными (-S-S-) связями. Схематически образование окисленных димеров глютатиона можно представить следующим образом:

R-SH + HS-R ¾¾® R-S-S-R + фермент - H 2

Глютатион содержится во всех растительных клетках и оказывает влияние на активность многих ферментов, катализирующих превращения белков.

Учитывая высокую биологическую активность многих пептидов, разрабатываются технологии их химического синтеза с целью получения искусственных гормонов, антибиотиков, различных медицинских препа-ратов. Как показывают опыты, путем химического синтеза можно полу-чать полипептидные цепи, содержащие до 100 аминокислотных остатков. Особенно значительные успехи достигнуты в результате сочетания хими-ческого и ферментативного синтезов. Так, например, из природных поли-пептидов путем частичного гидролиза выделяют пептидные фрагменты нужного состава, а затем их соединяют с помощью химических реакций или ферментативного синтеза, получая таким образом биологически активные пептидные препараты.

После того, как была сформулирована и экспериментально подтвер-ждена полипептидная теория строения белков, следующим этапом было определение структурных формул белков, показывающих последова-тельность соединения аминокислотных остатков в белковых молекулах. Впервые это удалось выполнить Ф.Сенгеру в 1954 г., применившему новые подходы в химической идентификации концевых аминокислот у различных пептидов, которые могут быть получены при частичном гидролизе полипептидов изучаемого белка.

Сопоставление аминокислотных последовательностей перекрываю-щихся фрагментов полипептидных цепей гормона поджелудочной железы- инсулина позволило ему с достаточно высокой точностью определить последовательность соединения аминокислотных остатков в молекуле этого белка. Как оказалось, молекула инсулина состоит из двух полипептидных цепей, в одной из которых содержится 30 аминокислотных остатков, в другой - 21. Полипептидные цепи в двух положениях соединены дисуль-фидными связями, которые образуются при взаимодействии сульфгид-рильных групп (-SH) цистеиновых радикалов точно по такому же меха-низму, как у димеров глютатиона. Положение этих цистеиновых остатков в полипептидных цепях инсулина показано на рисунке 5.

Следует учитывать, что нумерацию аминокислотных остатков в по-липептидах принято исчислять в направлении от N-концевой аминокислоты к С-концевой. В короткой цепи инсулина образуется еще одна дисульфидная связь между остатками цистеина в 6-м и 11-м положениях. В длинной цепи N-концевая аминокислота - фенилаланин, С-концевая аминокислота - аланин; в короткой цепи N-концевая аминокислота – глицин, С-концевая - аспарагин. Таким образом, на примере инсулина мы видим, что молекула белка может быть построена не из одного полипептида и разные полипептидные цепи в молекуле белка могут соединяться дисульфидными связями за счёт цистеиновых остатков.

Вслед за инсулином были расшифрованы аминокислотные последо-вательности различных пептидов и белков: окситоцина, вазопрессина, РНК-полимеразы, пепсина, трипсина, лизоцима, цитохромов, гемоглоби-на, папаина и многих других полиаминокислотных соединений. Уже к 1975 г. насчитывалось 600 белков с известными аминокислотными после-довательностями, к 1985 г. - свыше 2500. В настоящее время работа по анализу аминокислотных последовательностей в белках почти полностью автоматизирована и число таких белков уже значительно превышает 20 тысяч.

ПЕРВИЧНАЯ СТРУКТУРА БЕЛКОВ. Последовательность соедине-ния аминокислот в полипептидных цепях белковой молекулы принято называть первичной структурой белка . Она определяется последователь-ностью нуклеотидов конкретного участка ДНК, кодирующего данный полипептид и называемого геном.

Замена даже одной аминокислоты в структуре белка может сущест-венно изменить его функцию. Поэтому полипептиды можно рассматривать как "отпечатки" кодирующих их генов и использовать для распознавания генотипов, а также установления между ними генетического родства. Так, например, в короткой полипептидной цепи инсулина человека в положениях 8, 9 и 10 находится последовательность аминокислот Thr-Ser-Ile, в инсулине овцы - Ala-Gly-Val, в инсулине коровы - Ala-Ser-Val, в инсулине собаки - Thr-Ser-Ile, то есть такая же аминокислотная последовательность, как и у человека, что свидетельствует о меньшем филогенетическом различии между этими организмами.

В других исследованиях, связанных с изучением аномальных форм гемоглобина, установлено, что во многих случаях замена в одной из его полипептидных цепей хотя бы одной аминокислоты на другую вызывает нарушение физиологической функции этого белка, которое приводит к серьезным клиническим последствиям для организма человека.

ВТОРИЧНАЯ СТРУКТУРА БЕЛКОВ. Полипептидная цепь, вклю-чающая последовательность аминокислотных остатков, характерную для данного белка, формирует вполне определённую пространственную структуру, которую обычно называют конформацией белковой молекулы.

Пространственное же строение каждого отдельного участка полипептид-ной цепи представляет собой вторичную структуру белка.

Формирование вторичной структуры белковых молекул зависит от физико-химических параметров аминокислотных остатков и их последова-тельности в полипептидной цепи. Как уже было отмечено, атомные груп-пировки пептидной связи располагаются в одной плоскости, а каждая такая плоскостная структура соединяется с соседней через α-углеродные атомы аминокислотных радикалов ковалентными связями, вокруг которых возможно вращение плоскостных структур пептидных связей. Угол пово-рота по каждой из этих связей для каждого аминокислотного остатка вполне определенный, зависящий от строения аминокислотного радикала. Если на конкретном участке молекулы полипептида группируются аминокислотные остатки с близкими углами вращения по указанным связям, то и формируется однотипная вторичная структура.

В стабилизации вторичной структуры полипептида важную роль играют водородные связи, возникающие между группировками пептидных

связей по следующей схеме: ═N-H.....O=C═

Одна из разновидностей вторичной структуры белка - α-спираль, ко-торая была установлена в 1951 г. Л.Полингом и Р.Кори методом рент-геноструктурного анализа. При формировании α-спирали происходит спи-ралевидное закручивание полипептидной цепи, которое стабилизируется за счет образования водородных связей, возникающих в определённом порядке между NH- и CO-группами пептидных связей, находящихся в соседних витках спирали (рис. 6). NH-группа пептидной связи каждого аминокислотного остатка соединяется водородной связью с CO-группой пептидной связи другого аминокислотного остатка, удалённого в полипеп-тидной цепи от первого на 4 аминокислотных остатка, считая по направ-лению цепи назад.

Водородные связи ориентированы вдоль оси спирали, при этом атомы кислорода, соединенные двойной связью с атомами углерода, об-ращены от атомов углерода по спирали вперед, а атомы водорода, сое-диненные с атомами азота, обращены от атомов азота по спирали назад. Боковые радикалы аминокислот также ориентированы вдоль оси спирали по направлению, противоположному направлению полипептидной цепи (направление полипептидной цепи принято считать от N-конца к C-концу). Внутри α-спирали не образуется полости, так как всё пространство пол-ностью занято группировками пептидных связей и α-углеродных атомов. На поверхности α-спирали находятся боковые радикалы аминокислот, которые могут взаимодействовать как между собой, так и с веществами окружающей среды.

Большинство известных белков образуют α-спираль, у которой спи-ралевидное закручивание полипептидной цепи происходит по направлению движения часовой стрелки. Расчеты показывают, что на каждый виток спирали приходится 3,6 аминокислотных остатка, а ход спирали при удлинении цепи на один аминокислотный остаток равен 0,15 нм. Диаметр условной цилиндрической поверхности, на которой находятся α-углеродные атомы аминокислотных радикалов, составляет 1,01 нм (рис . 7).

Спиралевидная конфигурация вторичной структуры является основ-ной для фибриллярных белков, как например, белка волос, шерсти, перьев, рогов - кератина. Однако длина спирализованных участков глобулярных белков небольшая и обычно составляет несколько витков (3-4 оборота α-спирали). Спирализация полипептидной цепи возникает в том случае, когда на определенном её участке группируются остатки α-аланина, лейцина, фенилаланина, тирозина, триптофана, цистеина, метионина, гистидина, аспарагина, глутамина, валина.

Довольно часто в структуре глобулярных белков встречаются изгибы и петли, поворачивающие пептидную цепь на определенный угол. Наиболее характерной формой такой структуры является так называемый b-изгиб, поворачивающий пептидную цепь на 180˚. Обычно b-изгиб включает 3-4 аминокислотных остатка, ключевым из которых является остаток аминокислоты глицина.

Остатки аминокислоты пролина вызывают излом образующейся α-спирали с отклонением от оси спирали на угол 20˚-30˚. Это объясняется тем, что азот пролина, входящий в структуру пептидных группировок, не связан с атомом водорода и поэтому не образует водородной связи.

Есть аминокислоты, которые, исходя из строения радикала, форми-руют другой тип вторичной структуры (серин, изолейцин, треонин, лизин, аргинин, аспарагиновая и глутаминовая кислоты), его называют b-структу-рой. В b-структуре водородные связи образуются между CO- и NH-груп-пами, находящимися в соседних отрезках полипептидной цепи, которые имеют параллельную или противоположную направленность; в соответ-ствии с этим и b-структуры называют параллельными или антипараллель-ными.

В двух соседних цепях, формирующих b-структуру, в образовании водородных связей участвует половина CO- и NH-групп, что связано с че-редованием пространственного расположения аминокислотных радикалов. Боковые радикалы соседних аминокислотных остатков находятся в транс -положении по отношению к пептидной группировке, поэтому в образовании водородных связей с соседней полипептидной цепью участвует каждая вторая пептидная группа. Оставшиеся свободными СО- и NН-группы могут образовывать водородные связи с аналогичными группами еще одной цепи с противоположной стороны, а она со следующей пептидной цепью и т. д. Таким образом, с помощью водородных связей могут быть соединены несколько пептидных цепей (2-10) протяженностью до 8 аминокислотных остатков вдоль каждой из цепей, а у некоторых даже больше.

Отходящие в противоположные стороны от каждой полипептидной цепи радикалы аминокислотных остатков образуют поверхности, имеющие складчатое строение. Складки этих поверхностей определяются

углами связей α-углеродных атомов аминокислотных остатков (рис. 8). Очень часто поверхность b-структуры закручивается под определенным углом, образуя уже супервторичную структуру.

Вторичная структура полипептидов в виде α-спирали и b-структур относится к структурам, которые периодически повторяют в простран-стве свои конфигурации, в связи с чем их называют регулярными структурами. Однако практически в каждой белковой молекуле имеются участки с вполне определенной пространственной конфигурацией, но она не повторяется в других участках. Такие разновидности вторичной структуры белка принято называть нерегулярными структурами .

Каждый белок в зависимости от первичной структуры, определяющей набор и последовательность аминокислотных остатков в его полипептидных цепях, имеет вполне определенные группировки аминокислот на отдельных участках молекулы, которые в зависимости от их физико-химических параметров способны формировать тот или иной тип вторичной структуры. Поэтому в данном белке в соответствии с последовательностью соединения аминокислот на каждом участке реализуется совершенно определённый тип вторичной структуры.

Известно очень мало белков, имеющих на всех участках молекулы одинаковую вторичную структуру. К таким белкам относятся кератин (структурный белок шерсти, перьев, рогов) и коллаген (белок сухожилий), имеющие конфигурацию молекулы в виде α-спирали. Другим примером являются белки шелка (фиброин) и семян канавалии (конканавалин А), образующие преимущественно b-структуры. Большинство же белков формируют смешанный тип вторичной структуры, включающий на конкретных участках молекулы и α-спираль, и b-структуры, и нерегурные структуры. Так, например, в белке миоглобине 79% составляющих его аминокислотных остатков образуют вторичную структуру в виде α-спирали, 16% приходится на участки с нерегулярной структурой и 5% участвуют в образовании b-изгибов. В растительном белке папаине 28% вторичной структуры представлено α-спиралями, 14% - b-структурами, 17% -b-изгибами и 41% - нерегулярными структурами.

Участок антипараллельной b-структуры

Участок параллельной b-структуры

(стрелками показаны направления полипептидных цепей)

На рисунке 9 показана схема возможного образования вторичных структур на одном из участков полипептидной цепи ферментного белка глицеральдегидфосфатдегидрогеназы. Как видно из представленной схемы, последовательности аминокислотных остатков 9 ® 22, 33 ® 45, 78 ® 81, 85 ® 88, 95 ® 98, 100 ® 112, 129 ® 133 образуют спиралевидную вторичную структуру, тогда как аминокислотные последовательности 1®7, 26®32, 56®75, 90®94, 115®120, 126®128, 142® 147 образуют b-структуры, другие аминокислотные остатки участвуют в формировании изгибов и нерегулярных структур.

ТРЕТИЧНАЯ СТРУКТУРА БЕЛКОВ. Порядок размещения в пространстве всех атомных группировок полипептидной цепи принято называть третичной структурой белковой молекулы. Впервые понятие о третичной структуре белков было сформулировано в 1958 г. Д.Кендрью на основе рентгеноструктурного анализа пространственной конфигурации белка миоглобина, в результате чего удалось выяснить трёхмерную структуру этого белка.

В процессе дальнейших исследований было установлено, что в построении третичной структуры белка важную роль играют некова-лентные взаимодействия между радикалами аминокислотных остатков, находящимися на поверхности вторичных структур, а также дисульфидные связи, возникающие в результате взаимодействия сульфгидрильных групп

(-SH) остатков аминокислоты цистеина. При формировании третичной структуры реализуются три типа нековалентных взаимодействий: образова-ние водородных связей, электростатические и гидрофобные взаимодей-ствия.

Водородные связи соединяют между собой функциональные группы

боковых цепей аминокислотных остатков:

R-OH....O=C-R R-O....H-N-R R-C=O....H-N-R

ОH Н Н NН 2 Н

Насыщенность белковой молекулы водородными связями весьма велика – не менее 90% от возможного их образования. Важное значение для стабилизации третичной структуры белков имеют также водородные связи, которые образуют группировки полипептидов с молекулами воды, формирующими жидкую фазу белкового раствора.

Между заряженными группировками аминокислотных остатков возникают силы электростатического взаимодействия:

R-COO‾....H 3 N⁺-R

Формированию компактной пространственной структуры в значи-тельной степени способствуют гидрофобные взаимодействия между неполярными группировками боковых радикалов аминокислот, входящих в состав полипептидной цепи. В результате гидрофобных взаимодействий происходит отталкивание молекул воды от поверхности гидрофобных группировок и сближение последних, вследствие чего полипептидная цепь свертывается в виде глобулы. При этом большая часть гидрофобных радикалов оказывается внутри глобулы и таким образом защищается от контакта с молекулами воды, а гидрофильные радикалы, наоборот, находятся на поверхности белковой глобулы, они образуют водородные связи с молекулами воды и стабилизируют пространственную структуру белка.

К аминокислотам, имеющим гидрофобные радикалы, относятся глицин, лейцин, изолейцин, валин, аланин, фенилаланин, цистеин, метионин. Гидрофильные радикалы имеют аминокислотные остатки треонина, серина, триптофана, тирозина, аспарагина и аспарагиновой кислоты, глутамина и глутаминовой кислоты, лизина, гистидина.

Образующаяся в результате гидрофобных взаимодействий простран-ственная структура полипептида имеет довольно плотную упаковку, вследствие чего её очень часто называют гидрофобным ядром белковой молекулы. Вокруг ядра формируется оболочка из гидрофильных аминокислотных остатков, в которые могут быть включены и гидрофоб-ные радикалы, образующие гидрофобные выходы на поверхность белко-вой глобулы. За счет формирования таких структур обеспечивается спе-цифичность взаимодействия белковой молекулы с веществами окружающей среды. В состав гидрофильной оболочки, окружающей гидрофобное ядро, входят также молекулы воды, связанные водородными связями с полярными группировками белковой молекулы.

У многих белков важным фактором стабилизации третичной структуры являются дисульфидные связи, которые образуются при взаимодействии остатков цистеина по такому же механизму, как и при формировании димеров глутатиона. Однако образование дисульфидных связей не является обязательным условием стабильности третичной структуры белка, так как известно довольно много белков, формирующих устойчивую простран-ственную структуру только за счет нековалентных взаимодействий.

При формировании третичной структуры белка может возникать не одно, а два и более гидрофобных ядра, включающих достаточно большие отрезки одной и той же полипептидной цепи. Между этими ядрами образуются впадины и полости, имеющие существеннное значение для функционирования белка.

Третичная структура полипептидов складывается из элементов вторичной структуры. Так, в составе ряда белков третичная структура представлена только α-спиралями, которые размещаются в пространстве в виде параллельных участков. Вместе с тем известны белки, построенные в основном из b-структур, свернутых в пространстве под определенным углом. Однако у многих белков пространственная конфигурация молекулы формируется в виде смешанных структур, включающих определенные сочетания α-спиралей и b-структур. При этом довольно часто внутренняя часть молекулы полипептида представлена b-структурами, которые на поверхности окружены α-спиралями.

На рисунке 10 показана третичная структура ферментных белков триозофосфатизомеразы и лизоцима. В молекуле триозофосфатизомеразы в центральной части представлены b-слои, которые окружены α-спиралями. В лизоциме часть третичной структуры (в верхней части рисунка) образована в виде b-структур, а другая часть (в нижней части рисунка) представлена α-спиралями.

Для существующих в природе белков установлено строгое соответствие между первичной и третичной структурами полипептидов. Последовательность аминокислотных остатков в полипептидной цепи предопределяет ее пространственную конфигурацию. Этот принцип подтверждается в опытах по конструированию аминокислотных последовательностей полипептидов, способных формировать простран-твенную структуру заданного типа.

ЧЕТВЕРТИЧНАЯ СТРУКТУРА БЕЛКОВ. Многие белки представяют собой сложные молекулы, образующиеся при нековалентном взаимодей-ствии двух или нескольких полипептидов, каждый из которых имеет свою третичную структуру. Такие белки принято называть олигомерами, а образующие их полипептиды - полипептидными субъединицами белка. Способ совместной упаковки и размещения в пространстве полипептидных субъединиц олигомерных белков называют четвертичной структурой белка.

Впервые четвертичную структуру белка установили методом рентгеноструктурного анализа при изучении пространственной конфигура-

ции молекул гемоглобина (Перутц М., 1959). В этих исследованиях было определено, что молекула гемоглобина состоит из четырех субъединиц: двух α-полипептидных цепей по 141 аминокислотному остатку в каждой и двух b-цепей по 146 аминокислотных остатков в каждой. Субъединицы гемоглобина размещаются впространстве симметрично, занимая вершины тетраэдрической структуры (рис. 11).

В молекуле гемоглобина наблюдается более сильное взаимодействие между разными субъединицами и относительно слабее выражена связь между одноименными субъединицами, вследствие чего формируются довольно устойчивые димеры разных субъединиц (ab), из которых уже формируется структура тетрамерной молекулы за счет более слабых взаимодействий. Такой порядок взаимодействия субъединиц гемо-глобина приводит к образованию совершенно однотипных молекул a 2 b, тогда как другие сочетания субъединиц неустойчивы.

Если характер взаимодействия между всеми субъединицами олиго-мерного белка одинаковый, то возможно возникновение молекул с разным набором полипептидов. Так, например, у тетрамера, молекулы которого образуются из двух типов субъединиц А и Б, формируются олигомеры следующего состава: А 4 , А 3 Б, А 2 Б 2 , АБ 3 , АБ 4 . Все они представляют собой структурно близкие белки, выполняющие одну и ту же функцию в орга-низме. Молекулы олигомерного белка, построенные из разных полипеп-тидных субъединиц и выполняющие одну и ту же биологическую функ-цию, принято называть множественными молекулярными формами, или изоформами, данного белка.

Соединение полипептидных субъединиц в олигомерные молекулы происходит за счет нековалентных взаимодействий. Важную роль играют водородные связи, которые образуются между накладывающимися эле- ментами b-структур, входящих в состав белковых субъединиц, а также в результате взаимодействия радикалов аминокислот, имеющих группи- ровки:

CОOH, -OH, =NH, -NH 2 .

При рассмотрении третичной структуры белков было показано, что в поверхностной оболочке, окружающей гидрофобное ядро, также содер-жится много гидрофобных радикалов аминокислот, которые в результате сближения поверхностей третичных структур двух субъединиц вступают в гидрофобные взаимодействия, что вносит существенный вклад в форми-рование четвертичной структуры белков. Причем у некоторых белков гидрофобные взаимодействия являются главными факторами формирова-ния их четвертичной структуры. Так, например, у ряда регуляторных белков имеются характерные последовательности аминоислотных остатков, в которых с определенной частотой встречается гидрофобный радикал лейцина (в одном и том же положении через каждые 2 витка α-спирали). В результате взаимодействия двух субъединиц происходит гидрофобное совмещение их спиралевидных конфигураций и образование двойной спирали, соединяющей данные субъединицы в одну молекулу. Такой тип гидрофобного взаимодействия между полипептидами белка получил название "лейциновых петель".

Важными факторами формирования четвертичной структуры белков

являются электростатические взаимодействия между заряженными груп-пировками соседних субъединиц, представленными радикалами дикарбо-новых (аспарагиновая и глутаминовая кислоты) и диаминомонокарбоно-вых (лизин, аргинин) кислот. Таким образом, в результате совместного действия всех указанных факторов образуется достаточно устойчивая простран-ственная структура олигомерной молекулы белка.

Наиболее часто четвертичная структура белков представлена диме-рами, тримерами, тетрамерами и гексамерами, хотя и известны белки, содержащие в молекуле 8, 12, 24 и более субъединиц. Биологическая роль четвертичной структуры белков заключается в том, что путем соединения сравнительно небольших структурных элементов оказывается возможным формирование более сложных структур, обеспечивающих белку большую лабильность, способность выполнять конкретную биологическую функ-цию, возможность совмещения в одной пространственной структуре нес-колько функционально активных центров.

КОНФОРМАЦИЯ БЕЛКОВЫХ МОЛЕКУЛ

В клетках живого организма при определенной температуре, pH и концентрации физиологической среды белковые молекулы образуют тер-модинамически наиболее устойчивую в этих условиях пространственную структуру, обеспечивающую выполнение белком его биологической функ-ции. Такую пространственную структуру называют нативной конформа -цией белковой молекулы.

При изменении физиологических условий молекулы белков могут обратимо изменять свою нативную конформацию, при этом изменяется и их биологическая активность. Обратимые изменения нативной конформации белков (перестройка их пространственной структуры) имеют важное значение для регуляции ферментативной активности, транспорта ионов и метаболитов через мембраны, регулирования проницаемости клеточных мембран.

Как указывалось ранее, образование пространственной структуры белков определяется генетически детерминированной последователь-ностью соединения аминокислотных остатков в полипептидных цепях. Следовательно, нативная конформация белка зависит от его первичной структуры. Но вместе с тем для формирования нативной конформации белка требуется и весь набор факторов внутренней физиологической среды данной клетки (определенный pH, присутствие определенных ионов и других кофакторов).

Построение пространственной структуры белковой молекулы проис-ходит в процессе ее синтеза по мере удлинения полипептидной цепи, что, вероятно, и предопределяет последовательность взаимодействия группиро-вок при формировании вторичной и третичной структуры синтезируемого полипептида. В специальных опытах показано, что в белковой молекуле имеются аминокислотные остатки, которые являются активными инициа-торами нековалентных взаимодействий, облегчающих формирование про-межуточных структур в процессе перехода белка к нативной конфор-мации.

В правильном построении пространственной структуры белковых молекул участвуют специализированные белки - шапероны . Особенно много таких белков синтезируется в стрессовых условиях. Они образуют комплексы с полипептидными цепями, предотвращая их агрегацию в процессе формирования вторичной и третичной структуры. Один из участков белка-шаперона нековалентно связывается с развернутой полипептидной цепью, а другой присоединяет АТФ. При гидролизе АТФ шаперон переходит в другое конформационное состояние и его комплекс с формирующим пространственную структуру полипептидом распадается.

Известны и другие белки - катализаторы формирования простран-ственной структуры полипептидов. Так, в клетках высших организмов обнаружен фермент протеиндисульфидизомераза , катализирующий пра-вильное образование дисульфидных связей при формировании третичной структуры полипептидов. Он прелставляет собой димерный белок, содер-жащий в активном центре остатки аминокислоты цистеина.

В построении нативной конформации белка лимитирующей стадией может быть переход группировок пептидных связей из цис - в транс -конфигурацию. Особенно медленно проходит цис -транс -изомеризация группировок пептидных связей, образованных иминогруппой пролина. Для ускорения таких превращений в клетках организмов имеется специальный фермент пролил -цис -транс -изомераза .

Характерные особенности пространственной конфигурации гомоло-гичных белковых молекул, выполняющих одну и ту же функцию у разных организмов, определяются наличием одинаковых аминокислотных остатков в ключевых положениях, сильно влияющих на конформацию молекулы, тогда как в других положениях могут находиться разные аминокислотные остатки. Но они слабее влияют на конформацию молекулы.

Весьма характерное строение имеют мембранные белки, которые, как правило, содержат трансмембранные фрагменты в виде α-спиралей; от них отходят внемембранные полипептиды, обеспечивающие связь с окружающей физиологической средой. Трансмембранные полипептидные фрагменты могут быть образованы и в виде b-структур. Основные функции мембранных белков - транспорт молекул и ионов через мембрану, межклеточные взаимодействия, образование ионных каналов, передача внешних сигналов в клетку и др.

Под влиянием сильно действующих факторов (высокая температура, экстремальные значения pH, присутствие катионов тяжелых металлов, применение органических растворителей и детергентов) может происхо-дить разупорядочивание системы водородных связей, электростатических и гидрофобных взаимодействий в молекулах белков, что вызывает су-щественное изменение их вторичной и третичной структуры, приводящее к утрате нативной конформации. При этом белок уже не может выполнять свойственную ему биологическую функцию. Необратимое изменение пространственной структуры белковых молекул, которое сопровождается потерей их нативных свойств, называют денатурацией белков.

Наглядным примером денатурации является тепловая денатурация белков. При повышении температуры возрастает амплитуда колебаний атомов, что приводит к разрыву водородных связей и ослаблению элек-тростатических взаимодействий в молекулах белков, в результате чего происходит необратимое свертывание и осаждение белков из раствора. Большинство белков подвергаются денатурации при температуре 70–80˚C. Однако некоторые белки отличаются довольно высокой термостабиль-ностью. Так, например, ферменты термофильных бактерий сохраняют каталитическую активность при температуре 80˚C.

Известны вещества, стабилизирующие нативную структуру белковых молекул, и их присутствие в растворе повышает температуру дена-турации белков. К таким веществам относятся водорастворимые соли, содержащие катионы кальция (Ca 2+).

Денатурация белков может происходить в сильно кислой или сильно щелочной среде. В сильно кислой среде практически полностью подавляется диссоциация карбоксильных групп аминокислотных радикалов дикарбо-новых кислот и заряд белковой молекулы определяется положительными зарядами радикалов диаминомонокарбоновых кислот, взаимное отталкива-ние которых вызывает разрыв водородных связей и ослабление электростатических взаимодействий, стабилизирующих третичную структу-ру молекулы. В результате белки утрачивают нативную конформацию и подвергаются коагуляции (осаждению).

В сильно щелочной среде (pH>11) утрачивается положительный заряд радикалов диаминомонокарбоновых кислот и заряд белковой моле-кулы определяется отрицательными зарядами карбоксильных групп ди-карбоновых аминокислот, взаимное отталкивание которых вызывает раз-рыв водородных связей и ослабление электростатических взаимодействий в молекуле, вследствие чего происходит существенное изменение про-странственной структуры и денатурация белка.

Сильным денатурирующим действием обладают катионы тяжелых металлов, трихлоруксусная, хлорная, вольфрамовая и некоторые другие кислоты, которые образуют с белками нерастворимые соли.

Некоторые органические растворители (спирт, ацетон, формамид) способны взаимодействовать с гидрофобными радикалами аминокислотных остатков белков и с молекулами воды, вызывая ослабление гидрофобных взаимодействий и разрыв водородных связей, стабилизирующих третичную структуру полипептидов, в результате чего происходит денатурация белковых молекул.

Установлено, что денатурация белков в растворе или во влажном состоянии происходит значительно легче и быстрее, чем в высушенном состоянии, и это используется при разработке технологий сушки биоло-гического материала и различных растительных продуктов (зерна, макарон, овощей и фруктов). Сведения о денатурации белков также учитываются при выпечке хлеба и кондитерских изделий, приготовлении консервов и других пищевых продуктов.

Белки - природные полипептиды с огромной молекулярной массой. Они входят в состав всех живых организмов и выполняют различные биологические функции.

Строение белка.

У белков существует 4 уровня строения:

  • первичная структура белка - линейная последовательность аминокислот в полипептидной цепи, свернутых в пространстве:
  • вторичная структура белка - конформация полипептидной цепи, т.к. скручивание в пространстве за счет водородных связей между NH и СО группами. Есть 2 способа укладки: α -спираль и β - структура.
  • третичная структура белка - это трехмерное представление закрученной α -спираль или β -структуры в пространстве:

Эта структура образуется за счет дисульфидных мостиков -S-S- между цистеиновыми остатками. В образовании такой структуры участвуют противоположно заряженные ионы.

  • четвертичная структура белка образуется за счет взаимодействия между разными полипептидными цепями:

Синтез белка.

В основе синтеза лежит твердофазный метод, в котором первая аминокислота закрепляется на полимерном носителе, а к ней последовательно подшиваются новые аминокислоты. После полимер отделяют от полипептидной цепи.

Физические свойства белка.

Физические свойства белка определяются строением, поэтому белки делят на глобулярные (растворимые в воде) и фибриллярные (нерастворимые в воде).

Химические свойства белков.

1. Денатурация белка (разрушение вторичной и третичной структуры с сохранением первичной). Пример денатурации - свертывание яичных белков при варке яиц.

2. Гидролиз белков - необратимое разрушение первичной структуры в кислом или щелочном растворе с образованием аминокислот. Так можно установить количественный состав белков.

3. Качественные реакции:

Биуретовая реакция - взаимодействие пептидной связи и солей меди (II) в щелочном растворе. По окончанию реакции раствор окрашивается в фиолетовый цвет.

Ксантопротеиновая реакция - при реакции с азотной кислотой наблюдается желтое окрашивание.

Биологическое значение белка.

1. Белки - строительный материал, из него построены мышцы, кости, ткани.

2. Белки - рецепторы. Передают и воспринимают сигнал, поступающих от соседних клеток из окружающей среды.

3. Белки играют важную роль в иммунной системе организма.

4. Белки выполняют транспортные функции и переносят молекулы или ионы в место синтеза или накопления. (Гемоглобин переносит кислород к тканям.)

5. Белки - катализаторы - ферменты. Это очень мощные селективные катализаторы, которые ускоряют реакции в миллионы раз.

Есть ряд аминокислот, которые не могут синтезироваться в организме - незаменимые , их получают только с пищей: тизин, фенилаланин, метинин, валин, лейцин, триптофан, изолейцин, треонин.

Это биополимеры, мономерами которых являются аминокислоты.

Аминокислоты представляют собой низкомолекулярные органические соединения, содержащие карбоксильную (-СООН) и аминную (-NH 2) группы, которые связаны с одним и тем же атомом углерода. К атому углерода присоединяется боковая цепь - какой-либо радикал, придающий каждой аминокислоте определенные свойства.

У большей части аминокислот имеется одна карбоксильная группа и одна аминогруппа; эти аминокислоты называются нейтральными . Существуют, однако, и основные аминокислоты - с более чем одной аминогруппой, а также кислые аминокислоты - с более чем одной карбоксильной группой.

Известно около 200 аминокислот, встречающихся в живых организмах, однако только 20 из них входят в состав белков. Это так называемые основные или протеиногенные аминокислоты.

В зависимости от радикала основные аминокислоты делят на 3 группы:

  1. Неполярные (аланин, метионин, валин, пролин, лейцин, изолейцин, триптофан, фенилаланин);
  2. Полярные незаряженные (аспарагин, глутамин, серин, глицин, тирозин, треонин, цистеин);
  3. Заряженные (аргинин, гистидин, лизин - положительно; аспарагиновая и глутаминовая кислота - отрицательно).

Боковые цепи аминокислот (радикал) могут быть гидрофобными и гидрофильными и придают белкам соответствующие свойства.

У растений все необходимые аминокислоты синтезируются из первичных продуктов фотосинтеза. Человек и животные не способны синтезировать ряд протеиногенных аминокислот и должны получать их в готовом виде вместе с пищей. Такие аминокислоты называются незаменимыми. К ним относятся лизин, валин, лейцин, изолейцин, треонин, фенилаланин, триптофан, метионин; аргинин и гистидин - незаменимые для детей.

В растворе аминокислоты могут выступать в роли как кислот, так и оснований, т. е. они являются амфотерными соединениями. Карбоксильная группа (-СООН) способна отдавать протон, функционируя как кислота, а аминная (-NH2) принимать протон, проявляя таким образом свойства основания.

Аминогруппа одной аминокислоты способна вступать в реакцию с карбоксильной группой другой аминокислоты. Образующаяся при этом молекула представляет собой дипептид , а связь -СО-NH- называется пептидной связью.

На одном конце молекулы дипептида находится свободная аминогруппа, а на другом - свободная карбоксильная группа. Благодаря этому дипептид может присоединять к себя другие аминокислоты, образуя олигопептиды. Если таким образом соединяется много аминокислот (более 10), то образуется полипептид .

Пептиды играют важную роль в организме. Многие алигопептиды являются гормонами. Таковы окситоцин, вазопрессин, тиролиберин, тиреотропин и др. К олигопептидам относится также брадикидин (пептид боли) и некоторые опиаты («естественные наркотики» человека), выполняющие функцию обезболивания. Принятие наркотиков разрушает опиатную систему организма, поэтому наркоман без дозы наркотиков испытывает 1 сильную боль - «ломку», которая в норме снимается опиатами.

К олигопептидам относятся некоторые антибиотики (например, грамицидин S).

Многие гормоны (инсулин, адренокортикотропный гормон и др.), антибиотики (например, грамицидин А), токсины (например, дифтерийный токсин) являются полипептидами.

Белки представляют собой полипептиды, в молекулу которых входит от 50 до нескольких тысяч аминокислот с молекулярной массой свыше 10 000.

Каждому белку свойственна в определенной среде своя особая пространственная структура. При характеристике пространственной (трехмерной) структуры выделяют четыре уровня организации молекул белков.

Первичная структура - последовательность аминокислот в полипептид ной цепи. Первичная структура специфична для каждого белка и определяется генетической информацией, т.е. зависит от последовательности нуклеотидов в участке молекулы ДНК, кодирующем данный белок. От первичной структуры зависят все свойства и функции белков. Замена одной единственной аминокислоты в составе молекул белка или изменение их расположения обычно влечет за собой изменение функции белка. Так как в состав белков входит 20 видов аминокислот, число вариантов их комбинаций в пол и пептидной цепи поистине безгранично, что обеспечивает огромное количество видов белков в живых клетках.

В живых клетках молекулы белков или отдельные их участки представляют собой не вытянутую цепь, а скручены в спираль, напоминающую растянутую пружину (это так называемая α-спираль) или сложены в складчатый слой (β-слой). Вторичная структура возникает в результате образования водородных связей между -СО- и -NН 2 -группами двух пептидных связей внутри одной полипептидной цепи (спиральная конфигурация) или между двумя полипептидными цепями (складчатые слои).

Полностью α-спиральную конфигурацию имеет белок кератин. Это структурный белок волос, шерсти, ногтей, когтей, клюва, перьев и рогов. Спиральная вторичная структура характерна, помимо кератина, для таких фибриллярных (нитевидных) белков, как миозин, фибриноген, коллаген.

У большинства белков спиральные и неспиральные участки полипептидной цепи складываются в трехмерное образование шаровидной формы - глобулу (характерна для глобулярных белков). Глобула определенной конфигурации является третичной структурой белка. Третичная структура стабилизируется ионными, водородными связями, ковалентными дисульфидными связями (которые образуются между атомами серы, входящими в состав цистеина), а также гидрофобными взаимодействиями. Наиболее важными в возникновении третичной структуры являются гидрофобные взаимодействия; белок при этом свертывается таким образом, что его гидрофобные боковые цепи скрыты внутри молекулы, т. е. защищены от соприкосновения с водой, а гидрофильные боковые цепи, наоборот, выставлены наружу.

Многие белки с особо сложным строением состоят из нескольких полипептидных цепей, удерживаемых в молекуле вместе за счет гидрофобных взаимодействий, а также при помощи водородных и ионных связей - возникает четвертичная структура . Такая структура имеется, например, у глобулярного белка гемоглобина. Его молекула состоит из четырех отдельных полипептидных субъединиц (протомеров), находящихся в третичной структуре, и небелковой части - гема. Только в такой структуру гемоглобин способен выполнять свою транспортную функцию.

Под влиянием различных химических и физических факторов (обработка спиртом, ацетоном, кислотами, щелочами, высокой температурой, облучением, высоким давлением и т. д.) происходит изменение третичной и четвертичной структуры белка вследствие разрыва водородных и ионных связей. Процесс нарушения нативной (естественной) структуры белка называется денатурацией . При этом наблюдается уменьшение растворимости белка, изменение формы и размеров молекул, потеря ферментативной активности и т. д. Процесс денатурации иногда обратим, т. е. возвращение нормальных условий среды может сопровождаться самопроизвольным восстановлением естественной структуры белка. Такой процесс называется ренатурацией. Отсюда следует, что все особенности строения и функционирования макромолекулы белка определяются его первичной структурой.

По химическому составу выделяют белки простые и сложные. К простым относятся белки, состоящие только из аминокислот, а к сложным - содержащие белковую часть и небелковую (простатическую) - ионы металлов, углеводы, липиды и др. Простыми белками являются сывороточный альбумин крови, иммуноглобулин (антитела), фибрин, некоторые ферменты (трипсин) и др. Сложными белками являются все протеолипиды и гликопротеиды, гемоглобин, большинство ферментов и т.д.

Функции белков

Структурная.

Белки входят в состав клеточных мембран и органелл клетки. Стенки кровеносных сосудов, хрящи, сухожилия, волосы, ногти, когти у высших животных состоят преимущественно из белков.

Каталитическая (ферментативная).

Белки-ферменты катализируют протекание всех химических реакций в организме. Они обеспечивают расщепление питательных веществ в пищеварительном тракте, фиксацию углерода при фотосинтезе, реакции матричного синтеза и т. п.

Транспортная.

Белки способны присоединять и переносить различные вещества. Альбумины крови транспортируют жирные кислоты, глобулины - ионы металлов и гормоны. Гемоглобин переносит кислород и углекислый газ.

Молекулы белков, входящие в состав плазматической мембраны, принимают участие в транспорте веществ в клетку и из нее.

Защитная.

Ее выполняют иммуноглобулины (антитела) крови, обеспечивающие иммунную защиту организма. Фибриноген и тромбин участвуют в свертывании крови и предотвращают кровотечение.

Сократительная.

Обеспечивается движением относительно друг друга нитей белков актина и миозина в мышцах и внутри клеток. Скольжение микротрубочек, построенных из белка тубулина, объясняется движение ресничек и жгутиков.

Регуляторная.

Многие гормоны являются олигопептидами или белками, например: инсулин, глюкагон, аденокортикотропный гормон и др.

Рецепторная.

Некоторые белки, встроенные в клеточную мембрану, способны изменить свою структуру на действие внешней среды. Так происходят прием сигналов из внешней среды и передача информации в клетку. Примером может служить фитохром - светочувствительный белок, регулирующий фотопериодическую реакцию растений, и опсин - составная часть родопсина , пигмента, находящегося в клетках сетчатки глаза.

Антуан Франсуа де Фуркруа , основоположник изучения белков

Белки были выделены в отдельный класс биологических молекул в XVIII веке в результате работ французского химика Антуана Фуркруа и других учёных, в которых было отмечено свойство белков коагулировать (денатурировать) под воздействием нагревания или кислот . В то время были исследованы такие белки, как альбумин («яичный белок»), фибрин (белок из крови) и глютен из зерна пшеницы . Голландский химик Геррит Мульдер провёл анализ состава белков и выдвинул гипотезу, что практически все белки имеют сходную эмпирическую формулу . Термин «протеин» для обозначения подобных молекул был предложен в 1838 году шведским химиком Якобом Берцелиусом . Мульдер также определил продукты разрушения белков - аминокислоты и для одной из них (лейцина) с малой долей погрешности определил молекулярную массу - 131 дальтон . В 1836 Мульдер предложил первую модель химического строения белков. Основываясь на теории радикалов , он сформулировал понятие о минимальной структурной единице состава белка, C 16 H 24 N 4 O 5 , которая была названа «протеин», а теория - «теорией протеина» . По мере накопления новых данных о белках теория стала неоднократно подвергаться критике, но до конца 1850-х несмотря на критику ещё считалась общепризнанной.

К концу XIX века было исследовано большинство аминокислот, которые входят в состав белков. В 1894 году немецкий физиолог Альбрехт Коссель выдвинул теорию, согласно которой именно аминокислоты являются основными структурными элементами белков . В начале XX века немецкий химик Эмиль Фишер экспериментально доказал, что белки состоят из аминокислотных остатков, соединённых пептидными связями . Он же осуществил первый анализ аминокислотной последовательности белка и объяснил явление протеолиза .

Однако центральная роль белков в организмах не была признана до 1926 года , когда американский химик Джеймс Самнер (впоследствии - лауреат Нобелевской премии) показал, что фермент уреаза является белком .

Сложность выделения чистых белков затрудняла их изучение. Поэтому первые исследования проводились с использованием тех полипептидов , которые могли быть очищены в большом количестве, то есть белков крови , куриных яиц, различных токсинов , а также пищеварительных/метаболических ферментов , выделяемых после забоя скота. В конце 1950-х годов компания Armour Hot Dog Co. смогла очистить килограмм бычьей панкреатической рибонуклеазы А , которая стала экспериментальным объектом для многих учёных.

Идея о том, что вторичная структура белков - результат образования водородных связей между аминокислотами, была высказана Уильямом Астбери в 1933 году , но Лайнус Полинг считается первым учёным, который смог успешно предсказать вторичную структуру белков. Позднее Уолтер Каузман, опираясь на работы Кая Линдерстрём-Ланга, внёс весомый вклад в понимание законов образования третичной структуры белков и роли в этом процессе гидрофобных взаимодействий. В 1949 году Фред Сенгер определил аминокислотную последовательность инсулина , продемонстрировав таким способом, что белки - это линейные полимеры аминокислот, а не их разветвлённые (как у некоторых сахаров) цепи, коллоиды или циклолы . Первые структуры белков, основанные на дифракции рентгеновских лучей на уровне отдельных атомов , были получены в 1960-х годах и с помощью ЯМР в 1980-х годах. В 2006 году Банк данных о белках (Protein Data Bank) содержал около 40 000 структур белков.

В XXI веке исследование белков перешло на качественно новый уровень, когда исследуются не только индивидуальные очищенные белки, но и одновременное изменение количества и посттрансляционных модификаций большого числа белков отдельных клеток , тканей или организмов. Эта область биохимии называется протеомикой . С помощью методов биоинформатики стало возможно не только обработать данные рентгенно-структурного анализа, но и предсказать структуру белка, основываясь на его аминокислотной последовательности. В настоящее время криоэлектронная микроскопия больших белковых комплексов и предсказание малых белков и доменов больших белков с помощью компьютерных программ по точности приближаются к разрешению структур на атомном уровне.

Свойства

Размер белка может измеряться в числе аминокислот или в дальтонах (молекулярная масса), чаще из-за относительно большой величины молекулы в производных единицах - килодальтонах (кДа). Белки дрожжей , в среднем, состоят из 466 аминокислот и имеют молекулярную массу 53 кДа. Самый большой из известных в настоящее время белков - титин - является компонентом саркомеров мускулов ; молекулярная масса его различных изоформ варьирует в интервале от 3000 до 3700 кДа, он состоит из 38 138 аминокислот (в человеческой мышце solius ).

Белки различаются по степени растворимости в воде, но большинство белков в ней растворяются. К нерастворимым относятся, например, кератин (белок, из которого состоят волосы, шерсть млекопитающих, перья птиц и т. п.) и фиброин , который входит в состав шёлка и паутины . Белки также делятся на гидрофильные и гидрофобные . К гидрофильным относятся большинство белков цитоплазмы, ядра и межклеточного вещества, в том числе нерастворимые кератин и фиброин. К гидрофобным относятся большинство белков, входящих в состав биологических мембран интегральных мембранных белков, которые взаимодействуют с гидрофобными липидами мембраны (у этих белков обычно есть и небольшие гидрофильные участки).

Денатурация

Необратимая денатурация белка куриного яйца под воздействием высокой температуры

Как правило, белки сохраняют структуру и, следовательно, физико-химические свойства, например, растворимость в условиях, таких как температура и , к которым приспособлен данный организм . Изменение этих условий, например, нагревание или обработка белка кислотой или щёлочью , приводит к потере четвертичной, третичной и вторичной структур белка. Потеря белком (или другим биополимером) нативной структуры называется денатурацией. Денатурация может быть полной или частичной, обратимой или необратимой. Самый известный случай необратимой денатурации белка в быту - это приготовление куриного яйца, когда под воздействием высокой температуры растворимый в воде прозрачный белок овальбумин становится плотным, нерастворимым и непрозрачным. Денатурация в некоторых случаях обратима, как в случае осаждения (преципитации) водорастворимых белков с помощью солей аммония , и используется как способ их очистки .

Простые и сложные белки

В состав многих белков помимо пептидных цепей входят и неаминокислотные фрагменты, по этому критерию белки классифицируют на две большие группы - простые и сложные белки (протеиды). Простые белки содержат только аминокислотные цепи, сложные белки содержат также неаминокислотные фрагменты. Эти фрагменты небелковой природы в составе сложных белков называются «простетическими группами ». В зависимости от химической природы простетических групп среди сложных белков выделяют следующие классы:

  • Гликопротеиды , содержащие в качестве простетической группы ковалентно связанные углеводные остатки и их подкласс - протеогликаны , с мукополисахаридными простетическими группами. В образовании связи с углеводными остатками обычно участвуют гидроксильные группы серина или треонина. Большая часть внеклеточных белков, в частности, иммуноглобулины - гликопротеиды. В протеогликанах углеводная часть составляет ~95 %, они являются основным компонентом межклеточного матрикса .
  • Липопротеиды , содержащие в качестве простетической части нековалентно связанные липиды . Липопротеиды, образованные белками-аполипопротеинами связывающимися с ними липидами и выполняют функцию транспорта липидов.
  • Металлопротеиды , содержащие негемовые координационно связанные ионы металлов. Среди металлопротеидов есть белки, выполняющие депонирующие и транспортные функции (например, железосодержащие ферритин и трансферрин) и ферменты (например, цинксодержащая карбоангидраза и различные супероксиддисмутазы , содержащие в качестве активных центров ионы меди, марганца, железа и других металлов)
  • Нуклеопротеиды , содержащие нековалентно связанные ДНК или РНК, в частности, хроматин , из которого состоят хромосомы , является нуклеопротеидом.
  • Фосфопротеиды, содержащие в качестве простетической группы ковалентно связанные остатки фосфорной кислоты. В образовании сложноэфирной связи с фосфатом участвуют гидроксильные группы серина или треонина, фосфопротеинами являются, в частности, казеин молока.
  • Хромопротеиды - собирательное название сложных белков с окрашенными простетическими группами различной химической природы. К ним относится множество белков с металлсодержащей порфириновой простетической группой, выполняющие разнообразные функции - гемопротеины (белки, содержащие в качестве простетической группы гем - гемоглобин , цитохромы и др.), хлорофиллы ; флавопротеиды с флавиновой группой, и др.

Структура белка

  • Третичная структура - пространственное строение полипептидной цепи (набор пространственных координат составляющих белок атомов). Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которых гидрофобные взаимодействия играют важнейшую роль. В стабилизации третичной структуры принимают участие:
    • ковалентные связи (между двумя остатками цистеина - дисульфидные мостики);
    • ионные связи между противоположно заряженными боковыми группами аминокислотных остатков;
    • водородные связи;
    • гидрофильно-гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула «стремится» свернуться так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы.
  • Четвертичная структура (или субъединичная, доменная) - взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса. Белковые молекулы, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности и лишь после окончания синтеза образуют общую надмолекулярную структуру. В состав белка с четвертичной структурой могут входить как идентичные, так и различающиеся полипептидные цепочки. В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной. Надмолекулярные белковые комплексы могут состоять из десятков молекул.

Окружение белков

Разные способы изображения трёхмерной структуры белка на примере фермента триозофосфатизомеразы. Слева - «стержневая» модель, с изображением всех атомов и связей между ними; цветами показаны элементы. В середине изображены структурные мотивы, α-спирали и β-листы. Справа изображена контактная поверхность белка, построенная с учётом ван-дер-ваальсовых радиусов атомов; цветами показаны особенности активности участков

По общему типу строения белки можно разбить на три группы:

Образование и поддержание структуры белков в живых организмах

Способность белков восстанавливать правильную трёхмерную структуру после денатурации позволила выдвинуть гипотезу о том, что вся информация о конечной структуре белка содержится в его аминокислотной последовательности. В настоящее время общепризнана теория о том, что в результате эволюции стабильная конформация белка обладает минимальной свободной энергией по сравнению с другими возможными конформациями этого полипептида .

Тем не менее, в клетках существует группа белков, функция которых - обеспечение восстановления структуры белков после повреждения, а также создание и диссоциация белковых комплексов. Эти белки называются шаперонами. Концентрация многих шаперонов в клетке возрастает при резком повышении температуры окружающей среды, поэтому они относятся к группе Hsp (англ. heat shock proteins - белки теплового шока) . Важность нормальной работы шаперонов для функционирования организма может быть проиллюстрирована на примере шаперона α-кристаллина , входящего в состав хрусталика глаза человека. Мутации в этом белке приводят к помутнению хрусталика из-за агрегирования белков и, как результат, к катаракте .

Синтез белков

Химический синтез

Короткие белки могут быть синтезированы химическим путём с помощью группы методов, которые используют органический синтез - например, химическое лигирование . Большинство методов химического синтеза проходят в направлении от C-конца к N-концу, в противоположность биосинтезу. Таким образом можно синтезировать короткий иммунногенный пептид (эпитоп), служащий для получения антител путём инъекции в животных, или получения гибридо́м ; химический синтез также используется для получения ингибиторов некоторых ферментов . Химический синтез позволяет вводить искусственные, то есть не встречающиеся в обычных белках аминокислоты - например, присоединять флюоресцентные метки к боковым цепям аминокислот. Однако химические методы синтеза неэффективны при длине белков более 300 аминокислот; кроме того, искусственные белки могут иметь неправильную третичную структуру, и у аминокислот искусственных белков отсутствуют посттрансляционные модификации.

Биосинтез белков

Универсальный способ: рибосомный синтез

Белки синтезируются живыми организмами из аминокислот на основе информации, закодированной в генах . Каждый белок состоит из уникальной последовательности аминокислот, которая определяется нуклеотидной последовательностью гена, кодирующего данный белок. Генетический код составляется из трёхбуквенных «слов», называемых кодонами ; каждый кодон отвечает за присоединение к белку одной аминокислоты: например, сочетание АУГ соответствует метионину . Поскольку ДНК состоит из четырёх типов нуклеотидов , то общее число возможных кодонов равно 64; а так как в белках используется 20 аминокислот, то многие аминокислоты определяются более чем одним кодоном. Гены, кодирующие белки, сначала транскрибируются в последовательность нуклеотидов матричной РНК (мРНК) белками РНК-полимеразами .

Процесс синтеза белка на основе молекулы мРНК называется трансляцией . Во время начальной стадии биосинтеза белков, инициации, обычно метиониновый кодон узнаётся малой субъединицей рибосомы, к которой при помощи белковых факторов инициации присоединена метиониновая транспортная РНК (тРНК). После узнавания стартового кодона к малой субъединице присоединяется большая субъединица и начинается вторая стадия трансляции - элонгация. При каждом движении рибосомы от 5" к 3" концу мРНК считывается один кодон путём образования водородных связей между тремя нуклеотидами (кодоном) мРНК и комплементарным ему антикодоном транспортной РНК, к которой присоединена соответствующая аминокислота. Синтез пептидной связи катализируется рибосомальной РНК (рРНК), образующей пептидилтрансферазный центр рибосомы. Рибосомальная РНК катализирует образование пептидной связи между последней аминокислотой растущего пептида и аминокислотой, присоединённой к тРНК, позиционируя атомы азота и углерода в положении, благоприятном для прохождения реакции. Ферменты аминоацил-тРНК-синтетазы присоединяют аминокислоты к их тРНК. Третья и последняя стадия трансляции, терминация, происходит при достижении рибосомой стоп-кодона, после чего белковые факторы терминации гидролизуют последнюю тРНК от белка, прекращая его синтез. Таким образом, в рибосомах белки всегда синтезируются от N- к C-концу.

Нерибосомный синтез

Посттрансляционная модификация белков

После завершения трансляции и высвобождения белка из рибосомы аминокислоты в составе полипептидной цепи подвергаются разнообразным химическим модификациям. Примерами посттрансляционной модификации являются:

  • присоединение различных функциональных групп (ацетил- , метил- и фосфатных групп);
  • присоединение липидов и углеводородов ;
  • изменение стандартных аминокислот на нестандартные (образование цитруллина);
  • образование структурных изменений (образование дисульфидных мостиков между цистеинами);
  • удаление части белка как в начале (сигнальная последовательность), так и в отдельных случаях в середине (инсулин);
  • добавление небольших белков, которые влияют на деградацию белков (сумоилирование и убиквитинирование).

При этом тип модификации может быть как универсальным (добавление цепей, состоящих из мономеров убиквитина, служит сигналом для деградации этого белка протеасомой), так и специфическим для данного белка . В то же время один и тот же белок может подвергаться многочисленным модификациям. Так, гистоны (белки, входящие в состав хроматина у эукариот) в разных условиях могут подвергаться до 150 различным модификациям .

Функции белков в организме

Так же как и другие биологические макромолекулы (полисахариды , липиды) и нуклеиновые кислоты , белки - необходимые компоненты всех живых организмов , они участвуют в большинстве жизненных процессов клетки . Белки осуществляют обмен веществ и энергетические превращения. Белки входят в состав клеточных структур - органелл , секретируются во внеклеточное пространство для обмена сигналами между клетками, гидролиза пищи и образования межклеточного вещества.

Следует отметить, что классификация белков по их функции достаточно условна, потому что у эукариот один и тот же белок может выполнять несколько функций. Хорошо изученным примером такой многофункциональности служит лизил-тРНК-синтетаза - фермент из класса аминоацил-тРНК синтетаз, который не только присоединяет лизин к тРНК , но и регулирует транскрипцию нескольких генов . Многие функции белки выполняют благодаря своей ферментативной активности. Так, ферментами являются двигательный белок миозин , регуляторные белки протеинкиназы , транспортный белок натрий-калиевая аденозинтрифосфатаза и др.

Каталитическая функция

Наиболее хорошо известная роль белков в организме - катализ различных химических реакций. Ферменты - группа белков, обладающая специфическими каталитическими свойствами, то есть каждый фермент катализирует одну или несколько сходных реакций. Ферменты катализируют реакции расщепления сложных молекул (катаболизм) и их синтеза (анаболизм), а также репликации и репарации ДНК и матричного синтеза РНК. Известно несколько тысяч ферментов; среди них такие как, например, пепсин расщепляют белки в процессе пищеварения. В процесс посттрансляционной модификации некоторые ферменты добавляют или удаляют химические группы на других белках. Известно около 4000 реакций, катализируемых белками . Ускорение реакции в результате ферментативного катализа иногда огромно: например, реакция, катализируемая ферментом оротат-карбоксилазой, протекает в 10 17 раз быстрее некатализируемой (78 миллионов лет без фермента, 18 миллисекунд с участием фермента) . Молекулы, которые присоединяются к ферменту и изменяются в результате реакции, называются субстратами .

Хотя ферменты обычно состоят из сотен аминокислот, только небольшая часть из них взаимодействует с субстратом, и ещё меньшее количество - в среднем 3-4 аминокислоты, часто расположенные далеко друг от друга в первичной аминокислотной последовательности - напрямую участвуют в катализе . Часть фермента, которая присоединяет субстрат и содержит каталитические аминокислоты, называется активным центром фермента .

Структурная функция

Защитная функция

Существуют несколько видов защитных функций белков:

Регуляторная функция

Многие процессы внутри клеток регулируются белковыми молекулами, которые не служат ни источником энергии, ни строительным материалом для клетки. Эти белки регулируют транскрипцию , трансляцию , сплайсинг , а также активность других белков и др. Регуляторную функцию белки осуществляют либо за счёт ферментативной активности (например, протеинкиназы), либо за счёт специфического связывания с другими молекулами, как правило, влияющего на взаимодействие с этими молекулами ферментов.

Гормоны переносятся кровью. Большинство гормонов животных - это белки или пептиды. Связывание гормона с рецептором является сигналом, запускающим в клетке ответную реакцию. Гормоны регулируют концентрации веществ в крови и клетках, рост, размножение и другие процессы. Примером таких белков служит инсулин , который регулирует концентрацию глюкозы в крови .

Клетки взаимодействуют друг с другом с помощью сигнальных белков, передаваемых через межклеточное вещество. К таким белкам относятся, например, цитокины и факторы роста .

Транспортная функция

Запасная (резервная) функция белков

К таким белкам относятся так называемые резервные белки, которые запасаются в качестве источника энергии и вещества в семенах растений и яйцеклетках животных; белки третичных оболочек яйца (овальбумины) и основной белок молока (казеин) также выполняют, главным образом, питательную функцию. Ряд других белков используется в организме в качестве источника аминокислот, которые в свою очередь являются предшественниками биологически активных веществ, регулирующих процессы метаболизма .

Рецепторная функция

Белковые рецепторы могут как находиться в цитоплазме, так и встраиваться в клеточную мембрану . Одна часть молекулы рецептора воспринимает сигнал , которым чаще всего служит химическое вещество, а в некоторых случаях - свет, механическое воздействие (например, растяжение) и другие стимулы. При воздействии сигнала на определённый участок молекулы - белок-рецептор - происходят её конформационные изменения . В результате меняется конформация другой части молекулы, осуществляющей передачу сигнала на другие клеточные компоненты. Существует несколько механизмов передачи сигнала. Некоторые рецепторы катализируют определённую химическую реакцию; другие служат ионными каналами, которые при действии сигнала открываются или закрываются; третьи специфически связывают внутриклеточные молекулы-посредники. У мембранных рецепторов часть молекулы, связывающаяся с сигнальной молекулой, находится на поверхности клетки, а домен, передающий сигнал, - внутри .

Моторная (двигательная) функция

Аминокислоты, которые не могут быть синтезированы животными, называются незаменимыми . Основные ферменты в биосинтетических путях, например, аспартаткиназа, которая катализирует первый этап в образовании лизина , метионина и треонина из аспартата , отсутствуют у животных.

Животные, в основном, получают аминокислоты из белков, содержащихся в пище. Белки разрушаются в процессе пищеварения , который обычно начинается с денатурации белка путём помещения его в кислотную среду и гидролиза с помощью ферментов, называемых протеазами . Некоторые аминокислоты, полученные в результате пищеварения, используются для синтеза белков организма, а остальные превращаются в глюкозу в процессе глюконеогенеза или используются в цикле Кребса . Использование белка в качестве источника энергии особенно важно в условиях голодания, когда собственные белки организма, в особенности мускулов, служат источником энергии . Аминокислоты также являются важным источником азота в питании организма.

Единых норм потребления белков человеком нет. Микрофлора толстого кишечника синтезирует аминокислоты, которые не учитываются при составлении белковых норм.

Биофизика белка

Физические свойства белка очень сложны. В пользу гипотезы о белке, как о упорядоченной «кристаллоподобной системе» - «апериодическом кристалле» - свидетельствуют данные рентгеноструктурного анализа (вплоть до разрешения в 1 ангстрем) , высокая плотность упаковки , кооперативность процесса денатурации и другие факты .

В пользу другой гипотезы, о жидкообразных свойствах белков в процессах внутриглобулярных движений (модель ограниченной прыжковой или непрерывной диффузии) свидетельствуют эксперименты по рассеянию нейтронов , мёссбауэровской спектроскопии и рэлеевскому рассеянию мёссбауэровского излучения .

Методы изучения

Для определения количества белка в образце используют ряд методик:

  • Спектрофотометрический метод

См. также

Примечания

  1. С химической точки зрения все белки являются полипептидами. Однако короткие, меньше 30 аминокислот в длину полипептиды, особенно химически синтезированные, нельзя назвать белками.
  2. Muirhead H., Perutz M. Structure of hemoglobin. A three-dimensional Fourier synthesis of reduced human hemoglobin at 5.5 A resolution // Nature : журнал. - 1963. - Т. 199. - № 4894. - С. 633-638.
  3. Kendrew J., Bodo G., Dintzis H., Parrish R., Wyckoff H., Phillips D. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis // Nature : журнал. - 1958. - Т. 181. - № 4610. - С. 662-666.
  4. Leicester, Henry. «Berzelius, Jöns Jacob». Dictionary of Scientific Biography 2. New York: Charles Scribner’s Sons. 90-97 (1980). ISBN 0-684-10114-9
  5. Ю. А. Овчинников. Биоорганическая химия. - Просвещение, 1987.
  6. Белки // Химическая энциклопедия. - Советская энциклопедия, 1988.
  7. N. H. Barton, D. E. G. Briggs, J. A. Eisen. «Evolution», Cold Spring Harbor Laboratory Press, 2007 - P. 38. ISBN 978-0-87969-684-9
  8. Нобелевская лекция Ф. Сэнгера
  9. Fulton A, Isaacs W. (1991). «Titin, a huge, elastic sarcomeric protein with a probable role in morphogenesis». Bioessays 13 (4): 157-161. PMID 1859393 .
  10. EC 3.4.23.1 - pepsin A
  11. S J Singer. The Structure and Insertion of Integral Proteins in Membranes. Annual Review of Cell Biology. Volume 6, Page 247-296. 1990
  12. Страйер Л. Биохимия в 3 томах. - М.: Мир, 1984
  13. Селеноцистеин - пример нестандартной аминокислоты.
  14. Б. Льюин. Гены. - М ., 1987. - 544 с.
  15. Ленинджер А. Основы биохимии, в 3 томах. - М.: Мир, 1985.
  16. Лекция 2. Структурные уровни белков и нуклеиновых кислот («Основы биологии», Макеев Александр Владиславович, 1996 и 1997)
  17. http://pdbdev.sdsc.edu:48346/pdb/molecules/pdb50_6.html
  18. Anfinsen C. (1973). «Principles that Govern the Folding of Protein Chains». Science 181 : 223-229. Нобелевская лекция. Автор, совместно с Стэнфордом Муром и Уильямом Стейном, получил Нобелевскую премию по химии за «изучение рибонуклеазы, в особенности взаимоотношений между аминокислотной последовательностью [фермента] и [его] биологически активной конформацией».
  19. Ellis RJ, van der Vies SM. (1991). «Molecular chaperones». Annu. Rev. Biochem. 60 : 321-347.

По жизнь на нашей планете зародилась из коацерватной капельки. Она же представляла собой молекулу белка. То есть следует вывод, что именно эти химические соединения - основа всего живого, что существует сегодня. Но что же собой представляют белковые структуры? Какую роль сегодня они играют в организме и жизни людей? Какие виды белков существуют? Попробуем разобраться.

Белки: общее понятие

С точки зрения молекула рассматриваемого вещества представляет собой последовательность аминокислот, соединенных между собой пептидными связями.

Каждая аминокислота имеет две функциональные группы:

  • карбоксильную -СООН;
  • амино-группу -NH 2 .

Именно между ними и происходит формирование связи в разных молекулах. Таким образом, пептидная связь имеет вид -СО-NH. Молекула белка может содержать сотни и тысячи таких группировок, это будет зависеть от конкретного вещества. Виды белков очень разнообразны. Среди них есть и те, которые содержат незаменимые для организма аминокислоты, а значит должны поступать в организм с пищевыми продуктами. Существуют такие разновидности, которые выполняют важные функции в мембране клетки и ее цитоплазме. Также выделяют катализаторы биологической природы - ферменты, которые тоже являются белковыми молекулами. Они широко используются и в быту человека, а не только участвуют в биохимических процессах живых существ.

Молекулярная масса рассматриваемых соединений может колебаться от нескольких десятков до миллионов. Ведь количество мономерных звеньев в большой полипептидной цепи неограниченно и зависит от типа конкретного вещества. Белок в чистом виде, в его нативной конформации, можно увидеть при рассмотрении куриного яйца в Светло-желтая, прозрачная густая коллоидная масса, внутри которой располагается желток - это и есть искомое вещество. То же самое сказать об обезжиренном твороге, Данный продукт также является практически чистым белком в его натуральном виде.

Однако не все рассматриваемые соединения имеют одинаковое пространственное строение. Всего выделяют четыре организации молекулы. Виды определяют его свойства и говорят о сложности строения. Также известно, что более пространственно запутанные молекулы подвергаются тщательной переработке в организме человека и животных.

Виды структур белка

Всего их выделяют четыре. Рассмотрим, что собой представляет каждая из них.

  1. Первичная. Представляет собой обычную линейную последовательность аминокислот, соединенных пептидными связями. Никаких пространственных закручиваний, спирализации нет. Количество входящих в полипептид звеньев может доходить до нескольких тысяч. Виды белков с подобной структурой - глицилаланин, инсулин, гистоны, эластин и другие.
  2. Вторичная. Представляет собой две полипептидные цепи, которые скручиваются в виде спирали и ориентируются по направлению друг к другу образованными витками. При этом между ними возникают водородные связи, удерживающие их вместе. Так формируется единая белковая молекула. Виды белков такого типа следующие: лизоцим, пепсин и другие.
  3. Третичная конформация. Представляет собой плотно упакованную и компактно собранную в клубок вторичную структуру. Здесь появляются другие типы взаимодействия, помимо водородных связей - это и ван-дер-ваальсово взаимодействие и силы электростатического притяжения, гидрофильно-гидрофобный контакт. Примеры структур - альбумин, фиброин, белок шелка и прочие.
  4. Четвертичная. Самая сложная структура, представляющая собой несколько полипептидных цепей, скрученных в спираль, свернутых в клубок и объединенных все вместе в глобулу. Такие примеры, как инсулин, ферритин, гемоглобин, коллаген, иллюстрируют собой как раз такую конформацию белков.

Если рассматривать все приведенные структуры молекул детально с химической точки зрения, то анализ займет много времени. Ведь на самом деле чем выше конфигурация, тем сложнее и запутаннее ее строение, тем больше типов взаимодействий наблюдается в молекуле.

Денатурация белковых молекул

Одним из самых важных химических свойств полипептидов является их способность разрушаться под влиянием определенных условий или химических агентов. Так, например, широко распространены разные виды денатурации белков. Что это за процесс? Он заключается в разрушении нативной структуры белка. То есть если изначально молекула имела третичную структуру, то после действия специальными агентами она разрушится. Однако при этом последовательность аминокислотных остатков остается в молекуле неизменной. Денатурированные белки быстро теряют свои физические и химические свойства.

Какие реагенты способны привести к процессу разрушения конформации? Таких несколько.

  1. Температура. При нагревании происходит постепенное разрушение четвертичной, третичной, вторичной структуры молекулы. Зрительно это можно наблюдать, например, при жарке обычного куриного яйца. Образующийся "белок" - это первичная структура полипептида альбумина, который был в сыром продукте.
  2. Радиация.
  3. Действие сильными химическими агентами: кислотами, щелочами, солями тяжелых металлов, растворителями (например, спиртами, эфирами, бензолом и прочими).

Данный процесс иногда еще называют плавлением молекулы. Виды денатурации белков зависят от агента, при действии которого она наступила. При этом в некоторых случаях имеет место процесс, обратный рассмотренному. Это ренатурация. Не все белки способны восстанавливать обратно свою структуру, однако значительная их часть может это делать. Так, химики из Австралии и Америки осуществили ренатурацию вареного куриного яйца при помощи некоторых реагентов и способа центрифугирования.

Этот процесс имеет значение для живых организмов при синтезе полипептидных цепочек рибосомами и рРНК в клетках.

Гидролиз белковой молекулы

Наравне с денатурацией, для белков характерно еще одно химическое свойство - гидролиз. Это также разрушение нативной конформации, но не до первичной структуры, а полностью до отдельных аминокислот. Важная часть пищеварения - гидролиз белка. Виды гидролиза полипептидов следующие.

  1. Химический. Основан на действии кислот или щелочей.
  2. Биологический или ферментативный.

Однако суть процесса остается неизменной и не зависит от того, какие виды гидролиза белков имеют место быть. В результате образуются аминокислоты, которые транспортируются по всем клеткам, органам и тканям. Дальнейшее их преобразование заключается в участии синтеза новых полипептидов, уже тех, что необходимы конкретному организму.

В промышленности процесс гидролиза белковых молекул используют как раз для получения нужных аминокислот.

Функции белков в организме

Различные виды белков, углеводов, жиров являются жизненно необходимыми компонентами для нормальной жизнедеятельности любой клетки. А значит и всего организма в целом. Поэтому во многом их роль объясняется высокой степенью значимости и повсеместной распространенности внутри живых существ. Можно выделить несколько основных функций полипептидных молекул.

  1. Каталитическая. Ее осуществляют ферменты, которые имеют белковую природу строения. О них скажем позже.
  2. Структурная. Виды белков и их функции в организме прежде всего влияют на структуру самой клетки, ее форму. Кроме того, полипептиды, выполняющие эту роль, образуют волосы, ногти, раковины моллюсков, перья птиц. Они же являются определенной арматурой в теле клетки. Хрящи состоят также из этих видов белков. Примеры: тубулин, кератин, актин и другие.
  3. Регуляторная. Данная функция проявляется в участии полипептидов в таких процессах, как: транскрипция, трансляция, клеточный цикл, сплайсинг, считывание мРНК и прочих. Во всех них они играют важную роль регулировщика.
  4. Сигнальная. Данную функцию выполняют белки, находящиеся на мембране клеток. Они передают различные сигналы от одной единицы к другой, и это приводит к сообщению тканей между собой. Примеры: цитокины, инсулин, факторы роста и прочие.
  5. Транспортная. Некоторые виды белков и их функции, которые они выполняют, являются просто жизненно необходимыми. Так происходит, например, с белком гемоглобином. Он осуществляет транспорт кислорода от клетки к клетке в составе крови. Для человека он незаменим.
  6. Запасная или резервная. Такие полипептиды накапливаются в растениях и яйцеклетках животных как источник дополнительного питания и энергии. Пример - глобулины.
  7. Двигательная. Очень важная функция, особенно для простейших организмов и бактерий. Ведь они способны передвигаться только при помощи жгутиков или ресничек. А эти органоиды по своей природе не что иное, как белки. Примеры таких полипептидов следующие: миозин, актин, кинезин и прочие.

Очевидно, что функции белков в организме человека и других живых существ очень многочисленны и немаловажны. Это еще раз подтверждает, что без рассматриваемых нами соединений невозможна жизнь на нашей планете.

Защитная функция белков

Полипептиды могут защищать от разных воздействий: химических, физических, биологических. Например, если организму угрожает опасность в виде вируса или бактерии, имеющих чужеродную природу, то иммуноглобулины (антитела) вступают с ними "в бой", выполняя защитную роль.

Если говорить о физических воздействиях, то здесь большую роль играют, например, фибрин и фибриноген, которые участвуют в свертывании крови.

Белки пищевые

Виды пищевого белка следующие:

  • полноценные - те, что содержат все необходимые для организма аминокислоты;
  • неполноценные - те, в которых находится неполный аминокислотный состав.

Однако для организма человека важны и те и другие. Особенно первая группа. Каждый человек, особенно в периоды интенсивного развития (детский и юношеский возраст) и полового созревания должен поддерживать постоянный уровень протеинов в себе. Ведь мы уже рассмотрели функции, которые выполняют эти удивительные молекулы, и знаем, что практически ни один процесс, ни одна биохимическая реакция внутри нас не обходится без участия полипептидов.

Именно поэтому необходимо каждый день потреблять суточную норму протеинов, которые содержатся в следующих продуктах:

  • яйцо;
  • молоко;
  • творог;
  • мясо и рыба;
  • бобы;
  • фасоль;
  • арахис;
  • пшеница;
  • овес;
  • чечевица и прочие.

Если потреблять в день 0,6 г полипептида на один кг веса, то у человека никогда не будет недостатка в этих соединениях. Если же длительное время организм недополучает необходимых белков, то наступает заболевание, имеющее название аминокислотного голодания. Это приводит к сильному нарушению обмена веществ и, как следствие, многим другим недугам.

Белки в клетке

Внутри самой маленькой структурной единицы всего живого - клетки - также находятся белки. Причем выполняют они там практически все вышеперечисленные свои функции. В первую очередь формируют цитоскелет клетки, состоящий из микротрубочек, микрофиламентов. Он служит для поддержания формы, а также для транспорта внутри между органоидами. По белковым молекулам, как по каналам или рельсам, движутся различные ионы, соединения.

Немаловажна роль белков, погруженных в мембрану и находящихся на ее поверхности. Здесь они и рецепторные, и сигнальные функции выполняют, принимают участие в строительстве самой мембраны. Стоят на страже, а значит играют защитную роль. Какие виды белков в клетке можно отнести к этой группе? Примеров множество, приведем несколько.

  1. Актин и миозин.
  2. Эластин.
  3. Кератин.
  4. Коллаген.
  5. Тубулин.
  6. Гемоглобин.
  7. Инсулин.
  8. Транскобаламин.
  9. Трансферрин.
  10. Альбумин.

Всего насчитывается несколько сотен различных которые постоянно передвигаются внутри каждой клетки.

Виды белков в организме

Их, конечно же, огромное разнообразие. Если же попытаться как-то разделить все существующие протеины на группы, то может получиться примерно такая классификация.


Вообще, можно взять за основу множество признаков для классификации белков, находящихся в организме. Единой пока не существует.

Ферменты

Биологические катализаторы белковой природы, которые значительно ускоряют все происходящие биохимические процессы. Нормальный обмен невозможен без этих соединений. Все процессы синтеза и распада, сборка молекул и их репликация, трансляция и транскрипция и прочие осуществляются под воздействием специфического вида фермента. Примерами этих молекул могут служить:

  • оксидоредуктазы;
  • трансферазы;
  • каталазы;
  • гидролазы;
  • изомеразы;
  • лиазы и прочие.

Сегодня ферменты используются и в быту. Так, при производстве стиральных порошков часто используют так называемые энзимы - это и есть биологические катализаторы. Они улучшают качество стирки при соблюдении указанного температурного режима. Легко связываются с частицами грязи и выводят их с поверхности тканей.

Однако из-за белковой природы энзимы не переносят слишком горячую воду или соседство с щелочными или кислотными препаратами. Ведь в этом случае произойдет процесс денатурации.



Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.