Схема индикации сетевого напряжения на светодиодах. Светодиод - индикатор сетевого напряжения. Индикаторная отвертка - указатель напряжения со световым оповещением, контактного типа

Принципиальные схемы простых индикаторов наличия сети 220В на светодиодах, меняем старые неоновые индикаторные лампы на светодиоды. В электрооборудовании повсеместно применяются индикаторные неоновые лампы для индикации включения аппаратуры.

В большинстве случаев схема как на рисунке 1. То есть, неоновая лампа через резистор сопротивлением 150-200 киолом подключается к сети переменного тока. Порог пробоя неоновой лампы ниже 220V, потому она легко пробивается и светится. А резистор ограничивает ток через неё, чтобы она не взорвалась от превышения тока.

Бывают и неоновые лампы со встроенными токоограничительными резисторами, в таких схемах кажется как будто неоновая лампа включена в сеть без резистора. На самом деле резистор спрятан в её цоколе или в её проволочном выводе.

Недостаток неоновых индикаторных ламп в слабом свечении и только розовом цвете свечения, ну и еще в том что это стекло. Плюс, неоновые лампы сейчас в продаже встречаются реже светодиодов. Понятно, что есть соблазн сделать аналогичный индикатор включения, но на светодиоде, тем более светодиоды бывают разных цветов и значительно более яркие чем «неонки», ну и нет стекла.

Но, светодиод низковольтный прибор. Прямое напряжение обычно не более ЗV, да и обратное тоже весьма низкое. Даже если светодиодом заменить неоновую лампу, он выйдет из строя за счет превышения обратного напряжения при отрицательной полуволне сетевого напряжения.

Рис. 1. Типовая схема подключения неоновой лампы к сети 220В.

Впрочем, есть двухцветные двухвыводные светодиоды. В корпусе такого светодиода есть два разноцветных светодиода, включенных встречно-параллельно. Такой светодиод можно подключить практически так же, как неоновую лампу (рис.2), только резистор взять сопротивлением поменьше, потому что для хорошей яркости через светодиод должен протекать ток больше чем через неоновую лампу.

Рис. 2. Схема индикатора сети 220В на двухцветном светодиоде.

В этой схеме одна половина двухцветного светодиода HL1 работает на одной полуволне, а вторая - на другой полуволне сетевого напряжения. В результате обратное напряжение на светодиоде не превышает прямого. Единственный недостаток - цвет. Он желтый. Потому что обычно два цвета - красный и зеленый, но горят они почти одновременно, потому зрительно выглядит как желтый цвет.

Рис. 3. Схема индикатора сети 220В на двухцветном светодиоде и конденсаторе.

На рисунках 4 и 5 показана схема индикатора включения на двух светодиодах, включенных встречно-параллельно. Это почти то же, что на рис. 3 и 4, но светодиоды отдельные для каждого полупериода сетевого напряжения. Светодиоды могут быть как одного цвета, так и разного.

Рис. 4. Схема индикатора сети 220В с двумя светодиодами.

Рис. 5. Схема индикатора сети 220В с двумя светодиодами и конденсатором.

Но, если нужен только один светодиод, -второй можно заменить обычным диодом, например, 1N4148 (рис.6 и 7). И нет ничего страшного в том, что этот светодиод не рассчитан на напряжение электросети. Потому что обратное напряжение на нем не превысит прямого напряжения светодиода.

Рис. 6. Схема индикатора сети 220В со светодиодом и диодом.

Рис. 2. Схема индикатора сети 220В с одним светодиодом и конденсатором.

В схемах испытывались светодиоды, двухцветные типа L-53SRGW и одно-цветные типа АЛ307. Конечно же можно применить и любые другие аналогичные индикаторные светодиоды. Резисторы и конденсаторы так же могут быть других величин, - все зависит от того, какую силу тока нужно пустить через светодиод.

Андронов В. РК-2017-02.

В любой технике в качестве отображения режимов работы используют светодиоды. Причины очевидны – низкая стоимость, сверхмалое энергопотребление, высокая надёжность. Поскольку схемы индикаторов очень просты, нет необходимости в покупке фабричных изделий.

Из обилия схем, для изготовления указателя напряжения на светодиодах своими руками, можно подобрать наиболее оптимальный вариант. Индикатор можно собрать за пару минут из самых распространённых радиоэлементов.

Все подобные схемы по назначению делят на индикаторы напряжения и индикаторы тока.

Работа с сетью 220В

Рассмотрим простейший вариант – проверка фазы.

Эта схема представляет собой световой индикатор тока, которым оснащают некоторые отвёртки. Такое устройство даже не требует внешнего питания, поскольку разность потенциала между фазовым проводом и воздухом или рукой достаточна для свечения диода.

Для отображения сетевого напряжения, например, проверки наличия тока в разъёме розетки, схема ещё проще.

Простейший индикатор тока на светодиодах 220В собирается на ёмкостном сопротивлении для ограничения тока светодиода и диода для защиты от обратной полуволны.

Проверка постоянного напряжения

Нередко возникает необходимость прозвонить низковольтную цепь бытовых приборов, либо проверить целостность соединения, например, провод от наушников.

В качестве ограничителя тока можно использовать маломощную лампу накаливания либо резистор на 50-100 Ом. В зависимости от полярности подключения загорается соответствующий диод. Этот вариант подходит для цепей до 12В. Для более высокого напряжения потребуется увеличить сопротивления ограничивающего резистора.

Индикатор для микросхем (логический пробник)

Если возникает необходимость проверить работоспособность микросхемы, поможет в этом простейший пробник с тремя устойчивыми состояниями. При отсутствии сигнала (обрыв цепи) диоды не горят. При наличии логического ноля на контакте возникает напряжение около 0,5 В, которое открывает транзистор Т1, при логической единице (около 2,4В) открывается транзистор Т2.

Такая селективность достигается, благодаря различным параметрам используемых транзисторов. У КТ315Б напряжение открытия 0,4-0,5В, у КТ203Б – 1В. При необходимости можно заменить транзисторы другими с аналогичными параметрами.

Светодиоды давно применяется в любой технике из-за своего малого потребления, компактности и высокой надежности в качестве визуального отображения работы системы. Индикатор напряжения на светодиодах это полезное устройство, необходимое любителям и профессионалам для работы с электричеством. Принцип используется в подсветках настенных выключателей и выключателей в сетевых фильтрах, указателях напряжения, тестерных отвертках. Подобное устройство можно сделать своими руками из-за его относительной примитивности.

Индикатор переменного напряжения 220 В

Рассмотрим первый, наиболее простой вариант индикатора сети на светодиоде. Его применяют в отвертках для нахождения фазы 220 В. Для реализации нам понадобится:

  • светодиод;
  • резистор;
  • диод.

Светодиод (HL) вы можете выбрать абсолютно любой. Характеристики диода (VD) должны быть ориентировочно такими: прямое напряжение, при прямом токе 10-100 мА – 1-1,1 В. Обратное напряжение 30-75 В. Резистор (R) должен иметь сопротивление не меньше 100 кОм, но и не больше 150 кОм, иначе просядет яркость свечения индикатора. Такое устройство можно самостоятельно выполнить в навесной форме, даже без использования печатной платы.

Схема примитивного индикатора тока будет выглядеть аналогичным образом, только необходимо использовать емкостное сопротивление.

Индикатор переменного и постоянного напряжения до 600 В

Следующий вариант представляет собой немного более сложную систему, из-за наличия в схеме кроме уже известных нам элементов, двух транзисторов и емкости. Но универсальность этого индикатора вас приятно удивит. Ему доступна безопасная проверка наличия напряжения от 5 до 600 В, как постоянного, так и переменного.

Основным элементом схемы индикатора напряжения выступает полевой транзистор (VT2). Пороговое значение напряжения, которое позволит сработать индикатору фиксируется разностью потенциалов затвор-исток, а максимально возможное напряжение определяет падение на сток-истоке. Он выполняет функции стабилизатора тока. Через биполярный транзистор (VT1) осуществляется обратная связь для поддержания заданного значения.

Принцип работы светодиодного индикатора заключается в следующем. При подаче на вход разности потенциалов, в контуре возникнет ток, значение которого определяется сопротивлением (R2) и напряжением перехода база-эмиттер биполярного транзистора (VT1). Для того чтобы слабенький светодиод загорелся, достаточно тока стабилизации 100 мкА. Для этого сопротивление (R2) должно быть 500-600 Ом, если напряжение база-эмиттер примерно 0,5 В. Конденсатор (С) необходим неполярный, емкостью 0,1 мкФ, служит он защитой светодиода от скачков тока. Резистор (R1) выбираем величиной 1 МОм, он исполняет роль нагрузки для биполярного транзистора (VT1). Функции диода (VD) в случае индикации постоянного напряжения – это проверка полюсов и защита. А для проверки переменного напряжения он играет роль выпрямителя, срезая отрицательную полуволну. Его обратное напряжение должно быть не меньше 600 В. Что касается светодиода (HL), то выбирайте , для того, чтобы его свечение при минимальных токах было заметно.

Автомобильный индикатор напряжения

Среди областей, где применение индикатора напряжения на светодиодах имеет неоспоримую пользу, можно выделить эксплуатацию автомобильного аккумулятора. Для того чтобы аккумулятор служил долго, необходимо контролировать напряжение на его клеммах и поддерживать в заданных пределах.

Предлагаем вам обратить внимание на схему автомобильного индикатора напряжения на , с помощью которой вы поймете, как изготовить устройство самостоятельно. RGB-светодиод отличается от обычного, наличием 3-х разноцветных кристаллов внутри своего корпуса. Данное свойство мы будем использовать для того, чтобы каждый цвет сигнализировал нам об уровне напряжения.

Схема состоит из девяти резисторов, трех стабилитронов, трех биполярных транзисторов и одного 3-цветного светодиода. Обратите внимание, какие элементы рекомендуется выбирать для реализации схемы.

  1. R1=1, R2=10, R3=10, R4=2.2, R5=10, R6=47, R7=2.2, R8=100, R9=100 (кОм).
  2. VD1=10, VD2=8.2, VD3=5.6 (В).
  3. VT – BC847C.
  4. HL – LED RGB.

Результат такой системы следующий. Светодиод загорается:

  • зеленым – напряжение 12-14 В;
  • синим – напряжение ниже 11,5 В;
  • красным – напряжение свыше 14,4 В.

Это происходит за счет правильно собранной схемы. С помощью потенциометра (R4) и стабилитрона (VD2) выставляется низший предел напряжения. Как только разность потенциалов между клеммами батареи становится меньше указанного значения – транзистор (VT2) закрывается, VT3 открывается, синий кристалл индуцирует. Если напряжение на клеммах находится в указанном диапазоне, то ток проходит через резисторы (R5,R9), стабилитрон (VD3), светодиод (HL), естественно, светит зеленым, транзистор (VT3) находится в закрытом состоянии, а второй (VT2) – в открытом. С помощью настройки переменного резистора (R2), превышение напряжения больше 14,4 В будет отображаться свечением светодиода красного цвета.

Индикатор напряжения на двухцветном светодиоде

Еще одна популярная схема индикации, это схема с использованием двухцветного светодиода для отображения степени заряда батареи или же сигнализации о включении или выключении лампы в другом помещении. Это может быть очень удобно, например, если выключатель света в подвале расположен до лестницы ведущей вниз (кстати, не забудьте прочитать интересную статью о том ). До того как спуститься туда, вы зажигаете свет, и индикатор загорается красным, в выключенном состоянии вы видите зеленое свечение на клавише. В этом случае вам не придется заходить в темную комнату и уже там нащупывать выключатель. Когда вы покинули подвал, вы по цвету светодиода знаете, горит свет в подвале или нет. Одновременно с этим, вы контролируете исправность лампочки, потому что в случае ее перегорания, красным светодиод светиться не будет. Вот схема индикатора напряжения на двухцветном светодиоде.

В заключении можно сказать, что это лишь основные возможные схемы использования светодиодов для индикации напряжения. Все они несложные, и в своей реализации под силу даже дилетанту. В них не использовалось никаких дорогостоящих интегральных микросхем и тому подобное. Рекомендуем обзавестись таким устройством всем любителям и профессионалам электрикам, чтобы никогда не подвергать свое здоровье опасности, приступая к ремонтным работам, не проверив наличие напряжения.

В настоящем справочном пособии приведены сведения об использовании тайников различных типов. В книге рассматриваются возможные варианты тайников, способы их создания и необходимые при этом инструменты, описываются приспособления и материалы для их сооружения. Даны рекомендации по устройству тайников дома, в автомобилях, на приусадебном участке и т. п.

Особое место уделено способам и методам контроля и защиты информации. Приведено описание специального промышленного оборудования, используемого при этом, а также устройств, доступных для повторения подготовленными радиолюбителями.

В книге дано подробное описание работы и рекомендации по монтажу и настройке более 50 устройств и приспособлений, необходимых при изготовлении тайников, а также предназначенных для их обнаружения и обеспечения сохранности.

Книга предназначена для широкого круга читателей, для всех, кто пожелает ознакомиться с этой специфической областью творения рук человеческих.

Один из самых привлекательных индикаторов сетевого напряжения - светоизлучающий диод. Во-первых, он малогабаритен. Во-вторых, потребляет небольшую мощность при достаточно ярком свечении.

Однако при использовании светодиода в качестве индикатора сетевого напряжения следует помнить, что работать он будет не с постоянным, а с переменным током при амплитудном значении напряжения около 310 В. Поэтому, в первую очередь, нужно ограничить ток через светодиод до максимально допустимого и, кроме того, защитить его от обратного напряжения. Есть различные варианты подключения светодиода к сетевой проводке конструкции. Один из них показан на рис. 3.32.


Рис. 3.32. Индикатор с токоограничительными резисторами

Резисторы R1 и R2 - ограничители тока через светодиод HL1, который в данном случае выбран равным 10 мА. Вместо двух резисторов мощностью по 1 Вт можно установить один на 2 Вт, но сопротивлением 30 кОм.

Диод VD1 ограничивает обратное напряжение, приложенное к светодиоду, на уровне около 1 В. Он может быть едва ли не любым кремниевым, лишь бы был способен пропускать выпрямленный ток более 10 мА. Но предпочтение следует отдать миниатюрным диодам серий КД102-КД104 либо другим малогабаритным, скажем, серий КД105, КД106, КД520, КД522. Другой вариант включения светодиода показан на рис. 3.33.


Рис. 3.33. Индикатор с гасящим конденсатором

Здесь токоограничивающим элементом является конденсатор С1. Желательно использовать малогабаритный пленочный металлизированный конденсатор типа К73-17 либо бумажный, рассчитанный на работу при переменном токе и с номинальным напряжением не менее 400 В. При зарядке самого конденсатора ток через него ограничивает резистор R1.

Приведенные схемы пригодны для использования практически любых светодиодов, работающих в диапазоне видимого света. Предпочтение все же отдается ярким светодиодам с рассеянным излучением (в порядке возрастания силы света): АЛ307КМ (красный), АЛ307ЖМ (желтый), АЛ307НМ (зеленый). Если допустимый ток через светодиод превышает 20 мА, оба резистора в первом варианте включения следует подобрать сопротивлением по 10 кОм, а емкость конденсатора во втором варианте увеличить до 0,15 мкФ. Диод в обоих вариантах должен быть рассчитан на выпрямленный ток не менее 20 мА.

Простая схема для определения коротких "провалов" напряжения сети.

Отечественное энергоснабжение

О невысоком качестве отечественного энергоснабжения известно всем, и сказано об этом немало. Вместо допуска по напряжению +/- 10 процентов, что составляет 180…240 В сетевое напряжение может «плавать» в диапазоне 160…260 и более В.

С такими медленными изменениями напряжения вполне успешно справляются стабилизаторы переменного напряжения на базе автотрансформаторов, например фирмы «Ресанта». Подобные стабилизаторы предназначены в основном для такой техники как холодильник, стиральная машина, электроплита.

Электронные стабилизаторы

Современная же электронная бытовая аппаратура таких стабилизаторов не требует, так как вся стабилизация напряжений осуществляется, как правило, внутренними полупроводниковыми стабилизаторами.

В очень большом диапазоне входных сетевых напряжений способны работать импульсные источники питания. Сейчас такими источниками оснащена практически вся электронная аппаратура. Например, многие современные телевизоры вполне работоспособны в диапазоне напряжения в розетке 100…280 В.

Импульсные помехи

Но, к сожалению, кроме таких медленных изменений сетевого напряжения, которые можно увидеть невооруженным глазом по миганию освещения, существуют еще кратковременные «провалы». Они носят импульсный характер, а от случайной импульсной помехи не способен защитить ни один стабилизатор.

Такие «провалы», незаметные даже по миганию освещения, неприятностей могут принести немало. Вдруг, ни с того ни с сего, произвольно перезагружается недавно приобретенный компьютер, работавшая всегда прилежно стиральная машина, заново начинает еще не законченный цикл стирки, микроволновка тоже сбивается с заданной программы.

Некоторые аппараты, например телевизоры, находящиеся в дежурном режиме, самопроизвольно включаются, или в процессе работы сами переключают каналы. Создается впечатление, что электронная техника понемногу приходит в негодность. А может ее уже пора нести в ремонт?

Индикатор «провалов» в сети

О подобных неприятных ситуациях может проинформировать описываемое ниже устройство - индикатор кратковременных «провалов» напряжения сети. Ведь если вдруг Ваш компьютер начал «самостоятельно» перезагружаться, а в это время раздался звуковой сигнал индикатора, зафиксировавший «провал» сетевого напряжения, то с достаточной долей уверенности можно сказать, что компьютер тут не виноват. Даже источники бесперебойного питания с импульсными помехами справляются не всегда.

Схема индикатора достаточно проста и показана на рисунке 1.

Рисунок 1. Индикатор коротких «провалов» сетевого напряжения.

Как видно по рисунку, схема прибора достаточно проста, содержит малое количество деталей, которые, к тому же стоят не дорого и дефицитом не являются. Поэтому для повторения схемы слишком высокой квалификации не требуется: если Вы умеете держать в руках паяльник, то особых проблем возникнуть не должно.

Работа схемы

Работает схема следующим образом. На элементах VD2, R3…R5, C2 и C4 собран датчик сетевого напряжения. Именно с его помощью и определяются «провалы» в сети. При подаче сетевого напряжения конденсаторы C2 и C4 быстро зарядятся до напряжения, указанного на схеме. Поэтому на входе DD1 присутствует логическая единица.

На элементах VD1, VD3, R2, C3, C6 собран блок питания устройства. Следует обратить внимание на то, что конденсатор С6 заряжается до напряжения 9В достаточно долго - около тридцати секунд. Это обусловлено большой постоянной времени цепочки R2, C3, C6. Поэтому при первоначальном включении прибора на выходе элемента DD1.1 устанавливается низкий уровень напряжения.

Конденсатор С5 при включении был разряжен, то есть имел низкий логический уровень. Как видно из схемы конденсатор С5 через резистор R8 соединен со входом триггера Шмитта, выполненного на элементах DD1.2…DD1.4. поэтому на выходе триггера Шмитта будет также низкий уровень напряжения. Поэтому светодиод HL1 будет погашен, а звуковой излучатель HA1 будет молчать. Для увеличения нагрузочной способности выходного каскада применено параллельное соединение элементов DD1.3 и DD1.4.

Тут следует заметить, что подобное соединение допустимо лишь в том случае, если оба принадлежат одному корпусу микросхемы и обладают идентичными параметрами. Такое соединение элементов находящихся в разных корпусах недопустимо.

Вышеописанное состояния индикатора будет сохраняться до тех пор, пока не будет «провала» сетевого напряжения. В случае же значительного уменьшения напряжения сети длительностью не менее 60 мс происходит разряд конденсаторов С2 и С4.

Другими словами на входе элемента DD1.1 появится низкий уровень, который приведет к появлению высокого уровня на выходе DD1.1. Этот высокий уровень приводит к заряду через диод VD4 конденсатора С5, то есть появлению высокого уровня на входе триггера Шмитта и соответственно такого же уровня на его выходе. (Логика работы триггера Шмитта была описана в одной из статей из цикла «Логические микросхемы»).

Современная элементная база позволяет заметно упростить схемное решение многих устройств. В данном случае применен звуковой излучатель со встроенным генератором. Поэтому для получения звука достаточно подать на излучатель просто постоянное напряжение.

В данном случае это будет напряжение высокого уровня с выхода триггера Шмитта. (Когда излучатели были без встроенного генератора, его приходилось собирать также на микросхемах.) Последовательно со звуковым излучателем установлен светодиод HL1 обеспечивающий световую индикацию «провала».

В таком состоянии триггер Шмитта будет находиться еще некоторое время после того, как «провал» уже закончится. Это время обусловлено зарядом конденсатора С5 и при указанных на схеме номиналах элементов составит примерно 1 секунду. Можно сказать, что просто происходит растягивание «провала» по времени.

После разряда конденсатора С5 устройство вновь возвращается в режим слежения за состоянием напряжения сети. Для предотвращения ложных срабатываний устройства от помех на входе установлен помехозащитный фильтр L1, C1, R1.

Несколько слов о деталях и конструкции

Кроме указанных на схеме элементов возможны следующие замены. Микросхему К561ЛА7 можно заменить без переделки схемы и платы на К561ЛЕ5, либо на импортный аналог любой из КМОП серий. Не рекомендуется применять микросхемы серии К176 не имеющие встроенных защитных диодов по входам, так как входное напряжение микросхемы в данной конструкции превышает напряжение питания. Такое обстоятельство может привести к выходу микросхемы серии К176 из строя ввиду «тиристорного эффекта».

Стабилитрон VD3 можно заменить любым маломощным с напряжением стабилизации около 9 В. Вместо диодов КД521 подойдут любые импульсные кремниевые диоды, например КД503, КД510, КД522, либо импортные 1N4148, диоды КД243 можно заменить на 1N4007.

Высоковольтный керамический конденсатор С1 типа К15-5. Вместо него возможно применение пленочного конденсатора на рабочее напряжение не менее 630В, правда за счет некоторого снижения надежности. Также пленочным должен быть конденсатор С2. Электролитические конденсаторы лучше применить импортные.

Указанный на схеме светодиод можно заменить практически любым отечественным или импортным, желательно красного цвета. Звуковой излучатель можно заменить на любой из серии EFM: EFM - 250, EFM - 472A.

Весь индикатор смонтирован на печатной плате, показанной на рисунке 2.

На плате установлены все детали кроме светодиода и звукового излучателя. Плату можно установить в отдельной пластмассовой коробке подходящих размеров, либо, если позволяет место, непосредственно в корпусе фильтра - удлинителя.

Настройка устройства сводится к подбору емкости конденсаторов С2 и С4. Удобнее подбирать емкость конденсатора С4. Делается это следующим образом: его емкость уменьшается до тех пор, пока пульсации напряжения на входе элемента DD1.1 не вызовут срабатывание устройства. По достижении такого результата следует заменить конденсатор С4 конденсатором с емкостью на 30 процентов больше подобранной.

Проверить правильность работы индикатора можно включением в ту же розетку галогенной лампы мощностью не менее полутора - двух киловатт. В момент включения должен раздаваться сигнал индикатора - сказываются повышенные токи в момент включения ламп. На этом наладку индикатора можно считать законченной.

Борис Аладышкин



Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.