Критический анализ современных достижений в биологии. Важнейшие открытия в биологии. Новые открытия в биологии XXI века

В силу быстрого технического прогресса и общего эволюционного развития человечества, с каждым годом все больше и больше люди учатся познавать этот мир. Все науки развиваются. Развиваются они благодаря новым открытиям в определенной области. И биология не исключение. Современные открытия в биологии, в частности, открытия 2014 года запомнились нам стремительным прогрессом в изучении флоры и фауны биосферы Земли, а также совершенно новыми техническими изобретениями.

Развитие биологии, как самостоятельной науки о жизни, началось еще в древние времена и продолжается сейчас в нескольких направлениях. В частности если говорить о менее упоминающих открытиях в биологии (это не значит, что они менее значительны), хочется вспомнить следующие:

  • значительно усовершенствовались технологии и методы определения белковых цепочек. Люди научились определять последовательности в структуре ДНК, а также устанавливать определенные аминокислотные последовательности белков. Такое открытие позволяет ученым практически полностью без всяких трудностей читать генетический код любого живого организма;
  • ускорилась и улучшилась разработка искусственных органов. Ученые научились выращивать мышцы, ткани печени, волосы и даже работающие клапаны сердца. От дальнейшего развития этих открытий, возможно, зависит множество человеческих жизней.

Открытие новых биологических видов

Практически каждый день в общие мировые базы ДНК добавляются все новые и новые данные о неизвестных до сих пор человечеству видах живых организмов. За период конца 2013-2014 годов удалось собрать данные о многих новых представителях флоры и фауны, мы же тут вспомним лишь некоторые из них.

Олингито

Это хищное млекопитающее по своему внешнему виду напоминает безобидную плюшевую игрушку, поэтому с его открытием образовался настоящий фурор среди любителей зверей. Животное было открыто в августе 2013 года в результате многолетних исследований зоолога из США Кристофера Хелджена.

Дерево дракона Кавесака

Как отдельный биологический вид это дерево было идентифицировано лишь в прошлом году. Почему этот яркий представитель флоры Таиланда долгие годы оставался незамеченным до сих пор остается загадкой. Тем не менее, вид был обнаружен недавно, поэтому относится к современным открытиям в биологии.

Микроб стерильных помещений

Официальное биологическое название на латыни этого вида организмов –Tersicoccus phoenicis. Микроб был обнаружен в середине 2014 года в абсолютно стерильных помещениях, где располагаются космические аппараты. В силу этих обстоятельств, многие ученые опасаются, что Tersicoccus phoenicis мог даже загрязнить Марс, попав на соседнюю планету вместе с марсоходами. Tersicoccus phoenicis – яркое доказательство того, в каких невероятно сложных условиях может существовать жизнь.

Эксперименты над своим телом. Безумие или жертва ради науки?

На страницах всемирной паутины с середины 2012 года начала появляться информация об открытии нового гормона. Вскоре стало известно, что этот гормон – иризин, который выделяется мышцами человека при сильной физической нагрузке. Действие этого гормона, как показало исследование, определяется на жировую ткань, где обычный «белый» жир, который служит источником энергии, превращается в «бурый», который выделяет энергию в виде тепла. Такое превращение липидов в организме, как утверждали многие ученые, имеет массу положительных эффектов для здоровья человека.

В начале 2014 года гарвардский биолог Брюс Спигельман решил провести испытание иризина на себе, доказав в такой способ положительные эффекты гормона на физическое состояние человека. Однако ученый неправильно рассчитал дозу и ввел в свое тело слишком большое количество гормона. Вскоре, весь жир в его организме превратился в «бурый». В результате ошибки, тело Спигельмана начало выделять столько тепла, что его пришлось помещать в специальную камеру с жидким азотом для уменьшения температуры тела. Дальнейшими исследованиями он руководит оттуда. Но положительный эффект гормона в правильных дозах он все-таки доказал. По заключению врачей, Брюс Спигельман – самый здоровый человек в мире. Его поступок был описан во многих иностранных и русских статьях под заголовком «Современные открытия в биологии».

Ученые нашли новый вид млекопитающего — Олингито — видео

- 33.35 Кб

Достижения биологии в современных вариантах систематики жизни

На основании последних научных достижений современной биологической науки дано следующее определение жизни: «Жизнь – это открытые саморегулирующиеся и самовоспроизводящиеся системы совокупностей живых организмов, построенные из сложных биологических полимеров – белков и нуклеиновых кислот» (И. И. Мечников).

Достижения биологии последнего времени привели к возникновению принципиально новых направлений в науке. Раскрытие молекулярного строения структурных единиц наследственности (генов) послужило основой для создания генной инженерии. С помощью ее методов создают организмы с новыми, в том числе и не встречающимися в природе, комбинациями наследственных признаков и свойств. Она открывает возможности выведения новых сортов культурных растений и высокопродуктивных пород животных, создания эффективных лекарственных препаратов и т.д.

Живая природа устроила себя гениально просто и мудро. У нее есть единственная самовоспроизводящая молекула ДНК, на которой записана программа жизни, а конкретнее, весь процесс синтеза, структура и функция белков как основных элементов жизни. Кроме сохранения программы жизни молекула ДНК выполняет еще одну важнейшую функцию – ее самовоспроизведение, копирование создают преемственность между поколениями, непрерывность нити жизни. Единожды возникнув, жизнь самовоспроизводится в огромном разнообразии, которое обеспечивает ее устойчивость, приспособленность к разнообразным условиям среды и эволюцию.

Современные биотехнологии

Современная биология – область стремительных и фантастических преобразований в биотехнологии.

Биотехнологии основаны на использовании живых организмов и биологических процессов в промышленном производстве. На их базе освоено массовое производство искусственных белков, питательных и многих других веществ, по многим свойствам превосходящих продукты естественного происхождения. Успешно развивается микробиологический синтез ферментов, витаминов, аминокислот, антибиотиков и т.п. С применением генных технологий и естественных биоорганических материалов синтезируются биологически активные вещества - гормональные препараты и соединения, стимулирующие иммунитет.

Современная биотехнология позволяет превратить отходы древесины, соломы и другое растительное сырье в ценные питательные белки. Она включает процесс гидролизации промежуточного продукта - целлюлозы - и нейтрализацию образующейся глюкозы с введением солей. Полученный раствор глюкозы представляет собой питательный субстрат микроорганизмов – дрожжевых грибков. В результате жизнедеятельности микроорганизмов образуется светло-коричневый порошок – высококачественный пищевой продукт, содержащий около 50% белка-сырца и различные витамины. Питательной средой для дрожжевых грибков могут служить и такие содержащие сахар растворы, как паточная барда и сульфитный щелок, образующийся при производстве целлюлозы.

Некоторые виды грибков превращают нефть, мазут и природный газ в пищевую биомассу, богатую белками. Так, из 100 т неочищенного мазута можно получить 10 т дрожжевой биомассы, содержащей 5 т чистого белка и 90 т дизельного топлива. Столько же дрожжей производится из 50 т сухой древесины или 30 тыс. м3 природного газа. Для производства данного количества белка потребовалось бы стадо коров из 10 000 голов, а для их содержания нужны огромные площади пахотных земель. Промышленное производство белков полностью автоматизировано, и дрожжевые культуры растут в тысячи раз быстрее, чем крупный рогатый скот. Одна тонна пищевых дрожжей позволяет получить около 800 кг свинины, 1,5-2,5 т птицы или 15-30 тыс. яиц и сэкономить при этом до 5 т зерна.

Практическое применение достижений современной биологии уже в настоящее время позволяет получать промышленным путем значительные количества биологически активных веществ.

Биотехнология, по-видимому, уже в ближайшие десятилетия займет лидирующее положение и, возможно, определит лицо цивилизации XXI века.

Генные технологии

Генетика – важнейшая область современной биологии.

На основе генной инженерии родилась современная биотехнология. В мире сейчас колоссальное количество фирм, занимающихся бизнесом в этой области. Они делают все: от лекарств, антител, гормонов, пищевых белков до технических вещей – сверхчувствительных датчиков (биосенсоров), компьютерных микросхем, хитиновых диффузоров для хороших акустических систем. Генно-инженерная продукция завоевывает мир, она безопасна в экологическом отношении.

На начальной стадии развития генных технологий был получен ряд биологически активных соединений - инсулин, интерферон и др. Современные генные технологии объединяют химию нуклеиновых кислот и белков, микробиологию, генетику, биохимию и открывают новые пути решения многих проблем биотехнологии, медицины и сельского хозяйства.

Генные технологии основаны на методах молекулярной биологии и генетики, связанных с целенаправленным конструированием новых, не существующих в природе сочетаний генов. Основная операция генной технологии заключается в извлечении из клеток организма гена, кодирующего нужный продукт, или группы генов и соединение их с молекулами ДНК, способными размножаться в клетках другого организма.

ДНК, хранящаяся и работающая в клеточном ядре, воспроизводит не только саму себя. В нужный момент определенные участки ДНК – гены – воспроизводят свои копии в виде химически подобного полимера – РНК, рибонуклеиновой кислоты, которые в свою очередь служат матрицами для производства множества необходимых организму белков. Именно белки определяют все признаки живых организмов. Основная цепь событий на молекулярном уровне:

ДНК -> РНК -> белок

В этой строчке заключена так называемая центральная догма молекулярной биологии.

Генные технологии привели к разработке современных методов анализа генов и геномов, а они, в свою очередь, - к синтезу, т.е. к конструированию новых, генетически модифицированных микроорганизмов. К настоящему времени установлены нуклеотидные последовательности разных микроорганизмов, включая промышленные штаммы, и те, которые нужны для исследования принципов организации геномов и для понимания механизмов эволюции микробов. Промышленные микробиологи, в свою очередь, убеждены, что знание нуклеотидных последовательностей геномов промышленных штаммов позволит «программировать» их на то, чтобы они приносили большой доход.

Клонирование эукариотных (ядерных) генов в микробах и есть тот принципиальный метод, который привел к бурному развитию микробиологии. Фрагменты геномов животных и растений для их анализа клонируют именно в микроорганизмах. Для этого в качестве молекулярных векторов, переносчиков генов, используют искусственно созданные плазмиды, а также множество других молекулярных образований для выделения и клонирования.

С помощью молекулярных проб (фрагментов ДНК с определенной последовательностью нуклеотидов) можно определять, скажем, заражена ли донорская кровь вирусом СПИДа. А генные технологии для идентификации некоторых микробов позволяют следить за их распространением, например, внутри больницы или при эпидемиях.

Генные технологии производства вакцин развиваются в двух основных направлениях. Первое - улучшение уже существующих вакцин и создание комбинированной вакцины, т.е. состоящей из нескольких вакцин. Второе направление - получение вакцин против болезней: СПИДа, малярии, язвенной болезни желудка и др.

За последние годы генные технологии значительно улучшили эффективность традиционных штаммов-продуцентов. Например, у грибного штамма-продуцента антибиотика цефалоспорина увеличили число генов, кодирующих экспандазу, активность, которой задает скорость синтеза цефалоспорина. В итоге выработка антибиотика возросла на 15-40%.

Проводится целенаправленная работа по генетической модификации свойств микробов, используемых в производстве хлеба, сыроварении, молочной промышленности, пивоварении и виноделии, чтобы увеличить устойчивость производственных штаммов, повысить их конкурентоспособность по отношению к вредным бактериям и улучшить качество конечного продукта.

Генетически модифицированные микробы приносят пользу в борьбе с вредными вирусами и микробами и насекомыми. Например:

Устойчивость растений к гербицидам, что важно для борьбы с сорняками, засоряющими поля и снижающими урожай культивируемых растений. Получены и используются гербицидоустойчивые сорта хлопчатника, кукурузы, рапса, сои, сахарной свеклы, пшеницы и других растений.

Устойчивость растений к насекомым-вредителям. Разработка белка дельта-эндотоксину, продуцируемого разными штаммами бактерии Bacillus turingensis. Этот белок токсичен для многих видов насекомых и безопасен для млекопитающих, в том числе для человека.

Устойчивость растений к вирусным заболеваниям. Для этого в геном растительной клетки вводятся гены, блокирующие размножения вирусных частиц в растениях, например интерферон, нуклеазы. Получены трансгенные растения табака, томатов и люцерны с геном бета-интерферона.

Кроме генов в клетках живых организмов, в природе существуют также независимые гены. Они называются вирусами, если могут вызвать инфекцию. Оказалось, что вирус – это не что иное, как упакованный в белковую оболочку генетический материал. Оболочка – чисто механическое приспособление, как бы шприц, для того, чтобы упаковать, а затем впрыснуть гены, и только гены, в клетку-хозяина и отвалиться. Затем вирусные гены в клетке начинают репродуцировать на себе свои РНК и свои белки. Все это переполняет клетку, она лопается, гибнет, а вирус в тысячах копий освобождается и заражает другие клетки.

Болезнь, а иногда даже смерть вызывают чужеродные, вирусные белки. Если вирус «хороший», человек не умирает, но может болеть всю жизнь. Классический пример – герпес, вирус которого присутствует в организме 90% людей. Это самый приспособленный вирус, обычно заражающий человека в детском возрасте и живущий в нем постоянно.

Таким образом, вирусы – это, в сущности, изобретенное эволюцией биологическое оружие: шприц, наполненный генетическим материалом.

Теперь пример уже из современной биотехнологии, пример операции с зародышевыми клетками высших животных ради благородных целей. Человечество испытывает трудности с интерфероном – важным белком, обладающим противораковой и противовирусной активностью. Интерферон вырабатывается животным организмом, в том числе и человеческим. Чужой, не человеческий, интерферон для лечения людей брать нельзя, он отторгается организмом или малоэффективен. Человек же вырабатывает слишком мало интерферона для его выделения с фармакологическими целями. Поэтому было сделано следующее. Ген человеческого интерферона был введен в бактерию, которая затем размножалась и в больших количествах нарабатывала человеческий интерферон в соответствии с сидящим в ней человеческим геном. Сейчас эта, уже стандартная техника применяется во всем мире. Точно так же, и уже довольно давно, производится генно-инженерный инсулин. С бактериями, однако, возникает много сложностей при очистке нужного белка от бактериальных примесей. Поэтому начинают от них отказываться, разрабатывая методы введения нужных генов в высшие организмы. Это труднее, но дает колоссальные преимущества. Сейчас, в частности, уже широко распространено молочное производство нужных белков с использованием свиней и коз. Принцип здесь, очень коротко и упрощенно, таков. Из животного извлекают яйцеклетки и вставляют в их генетический аппарат, под контроль генов белков молока животного, чужеродные гены, определяющие выработку нужных белков: интерферона, или необходимых человеку антител, или специальных пищевых белков. Потом яйцеклетки оплодотворяют и возвращают в организм. Часть потомства начинает давать молоко, содержащее необходимый белок, а из молока выделить его уже достаточно просто. Получается значительно дешевле, безопаснее и чище.

Таким же путем были выведены коровы, дающие «женское» молоко (коровье молоко с необходимыми человеческими белками), пригодное для искусственного вскармливания человеческих младенцев. А это сейчас довольно серьезная проблема.

В целом можно сказать, что в практическом плане человечество достигло довольно опасного рубежа. Научились воздействовать на генетический аппарат, в том числе и высших организмов. Научились направленному, избирательному генному воздействию, продуцированию так называемых трансгенных организмов – организмов, несущих любые чужеродные гены. ДНК – это вещество, с которым можно манипулировать. В последние два-три десятилетия возникли методы, с помощью которых можно разрезать ДНК в нужных местах и склеивать с любым другим кусочком ДНК. Более того, могут вырезать и вставлять не только определенные готовые гены, но и рекомбинанты – комбинации разных, в том числе и искусственно созданных генов. Это направление получило название генной инженерии. Человек стал генным инженером. В его руках, в руках не столь уже совершенного в интеллектуальном отношении существа, появились безграничные, гигантские возможности - как у Господа Бога.

Современная цитология

Новые методы, особенно электронная микроскопия, применение радиоактивных изотопов и высокоскоростного центрифугирования, позволяют достичь огромных успехов в изучении строения клетки. В разработке единой концепции физико-химических аспектов жизни цитология все больше сближается с другими биологическими дисциплинами. При этом ее классические методы, основанные на фиксации, окрашивании и изучении клеток под микроскопом, по-прежнему сохраняют практическое значение.

Цитологические методы используются, в частности, в селекции растений для определения хромосомного состава растительных клеток. Такие исследования оказывают большую помощь в планировании экспериментальных скрещиваний и оценке полученных результатов. Аналогичный цитологический анализ проводится и на клетках человека: он позволяет выявить некоторые наследственные заболевания, связанные с изменением числа и формы хромосом. Такой анализ в сочетании с биохимическими тестами используют, например, при амниоцентезе для диагностики наследственных дефектов плода.

Однако самое важное применение цитологических методов в медицине – это диагностика злокачественных новообразований. В раковых клетках, особенно в их ядрах, возникают специфические изменения. Злокачественные образования – это не что иное, как отклонения в нормальном процессе развития вследствие выхода из-под контроля управляющих развитием систем, в первую очередь генетических. Цитология является достаточно простым и высокоинформативным методом скрининговой диагностики различных проявлений папилломавируса. Это исследование проводится как у мужчин, так и у женщин.

Описание работы

На основании последних научных достижений современной биологической науки дано следующее определение жизни: «Жизнь – это открытые саморегулирующиеся и самовоспроизводящиеся системы совокупностей живых организмов, построенные из сложных биологических полимеров – белков и нуклеиновых кислот» (И. И. Мечников).
Достижения биологии последнего времени привели к возникновению принципиально новых направлений в науке. Раскрытие молекулярного строения структурных единиц наследственности (генов) послужило основой для создания генной инженерии. С помощью ее методов создают организмы с новыми, в том числе и не встречающимися в природе, комбинациями наследственных признаков и свойств. Она открывает возможности выведения новых сортов культурных растений и высокопродуктивных пород животных, создания эффективных лекарственных препаратов и т.д.

Подробное решение параграф § 1 по биологии для учащихся 10 класса, авторов Сивоглазов В.И., Агафонова И.Б., Захарова Е.Т. 2014

Вспомните!

Какие достижения современной биологии вам известны?

рентгенология

аппараты УЗИ, ЭМРТ

установление молекулярной структуры ДНК

расшифровка генома человека и других организмов

генная инженерия

3D-биопринтеры

Электронные сканирующие микроскопы

Экстракорпоральное оплодотворение и др.

Каких ученых-биологов вы знаете?

Линней, Ламарк, Дарвин, Мендель, Морган, Павлов, Пастер, Гук, Левенгук, Броун, Пурнинье, Бэр, Мечников, Мичурин, Вернадский, Ивановский, Флеминг, Тенсли, Сукачев, Четвериков, Лайль, Опарин, Шванн, Шлейден, Чаграфф, Навашин, Тимирязев, Мальпиги, Гольджи и др.

Вопросы для повторения и задания

1. Расскажите о вкладе в развитие биологии древнегреческих и древне-римских философов и врачей.

Первым учёным, создавшим научную медицинскую школу, был древнегреческий врач Гиппократ (ок. 460 - ок. 370 до н. э.). Он считал, что у каждой болезни есть естественные причины и их можно узнать, изучая строение и жизнедеятельность человеческого организма. С древних времён и по сей день врачи торжественно произносят клятву Гиппократа, обещая хранить врачебную тайну и ни при каких обстоятельствах не оставлять больного без медицинской помощи. Великий энциклопедист древности Аристотель (384-322 до н. э.). Стал одним из основателей биологии как науки, впервые обобщив биологические знания, накопленные до него человечеством. Он разработал систематику животных, определив в ней место и человеку, которого он называл «общественным животным, наделённым разумом». Многие труды Аристотеля были посвящены происхождению жизни. Древнеримский учёный и врач Клавдий Гален (ок. 130 - ок. 200), изучая строение млекопитающих, заложил основы анатомии человека. В течение следующих пятнадцати веков его труды были основным источником знаний по анатомии.

2. Охарактеризуйте особенности воззрений на живую природу в Средние века, эпоху Возрождения.

Резко возрос интерес к биологии в эпоху Великих географических открытий (XV в.). Открытие новых земель, налаживание торговых отношений между государствами расширяли сведения о животных и растениях. Ботаники и зоологи описывали множество новых, неизвестных ранее видов организмов, принадлежащих к различным царствам живой природы. Один из выдающихся людей этой эпохи - Леонардо да Винчи (1452-1519) - описал многие растения, изучал строение человеческого тела, деятельность сердца и зрительную функцию. После того как был снят церковный запрет на вскрытие человеческого тела, блестящих успехов достигла анатомия человека, что получило отражение в классическом труде Андреаса Везалия (1514-1564) «Строение человеческого тела» (рис. 1). Величайшее научное достижение - открытие кровообращения - совершил в XVII в. английский врач и биолог Уильям Гарвей (1578-1657).

3. Используя знания, полученные на уроках истории, объясните, почему в Средние века в Европе наступил период застоя во всех областях знаний.

После падения Западной Римской империи в Европе наступил застой в развитии наук и ремесла. Этому способствовали феодальные порядки, установившиеся во всех европейских странах, постоянные войны между феодалами, нашествия полудиких народов с востока, массовые эпидемии, а главное - идеологическое закабаление умов широких народных масс римско-католической церковью. В этот период римско-католическая церковь, несмотря на многие неудачи в борьбе за политическое господство, распространила свое влияние во всей Западной Европе. Имея огромную армию духовенства различных рангов, папство фактически добилось полного господства христианской римско-католической идеологии среди всех западноевропейских народов. Проповедуя смирение и покорность, оправдывая существующие феодальные порядки, римско-католическое духовенство вместе с тем жестоко преследовало все новое и прогрессивное. Естественные науки и вообще так называемое светское образование были полностью подавлены.

4. Какое изобретение XVII в. дало возможность открыть и описать клетку?

Новую эру в развитии биологии ознаменовало изобретение в конце XVI в. микроскопа. Уже в середине XVII в. была открыта клетка, а позднее обнаружен мир микроскопических существ - простейших и бактерий, изучено развитие насекомых и принципиальное строение сперматозоидов.

5. Каково значение для биологической науки работ Л. Пастера и И. И. Мечникова?

Труды Луи Пастера (1822-1895) и Ильи Ильича Мечникова (1845-1916) определили появление иммунологии. В 1876 г. Пастер полностью посвятил себя иммунологии, окончательно установив специфичность возбудителей сибирской язвы, холеры, бешенства, куриной холеры и других болезней, развил представления об искусственном иммунитете, предложил метод предохранительных прививок, в частности от сибирской язвы, бешенства. Первая прививка против бешенства была сделана Пастером 6 июля 1885 г. В 1888 г. Пастер создал и возглавил научно-исследовательский институт микробиологии (Пастеровский институт), в котором работали многие известные ученые.

Мечников, обнаружив в 1882 г. явление фагоцитоза, разработал на его основе сравнительную патологию воспаления, а в дальнейшем - фагоцитарную теорию иммунитета, за что получил в 1908 г. Нобелевскую премию совместно с П. Эрлихом. Многочисленные работы Мечникова по бактериологии посвящены вопросам эпидемиологии холеры, брюшного тифа, туберкулеза и других инфекционных заболеваний. Мечников создал первую русскую школу микробиологов, иммунологов и патологов; активно участвовал в создании научно-исследовательских учреждений, разрабатывающих различные формы борьбы с инфекционными заболеваниями.

6. Перечислите основные открытия, сделанные в биологии в XX в.

В середине XX в. в биологию начали активно проникать методы и идеи других естественных наук. Достижения современной биологии открывают широкие перспективы для создания биологически активных веществ и новых лекарственных препаратов, для лечения наследственных заболеваний и осуществления селекции на клеточном уровне. В настоящее время биология стала реальной производительной силой, по развитию которой можно судить об общем уровне развития человеческого общества.

– Открытие витаминов

– Открытие пептидных связей в молекулах белков

– Изучение химической природы хлорофилла

– Описали основные ткани растений

– Открытие структуры ДНК

– Исследование фотосинтеза

– Открытие ключевого этапа в дыхании клеток - цикла трикарбоновых кислот, или цикла Кребса

– Исследование физиологии пищеварения

– Наблюдал клеточное строение тканей

– Наблюдал одноклеточных организмов, клетки животных (эритроциты)

– Открытие ядра в клетке

– Открытие аппарата Гольджи - органоида клетки, метод приготовления микроскопических препаратов нервной ткани, исследование строения нервной системы

– Установил, что одни части зародыша имеют влияние на развитие других его частей

– Сформулировал мутационную теорию

– Создание хромосомной теории наследственности

– Сформулировал закон гомологических рядов в наследственной изменчивости

– Обнаружили усиление мутационного процесса под действием радиоактивного излучения

– Открыл сложную структуру гена

– Открыл значение мутационного процесса в процессах, происходящих в популяциях, для эволюции вида

– Установил филогенетический ряд лошадиных как типовой ряд постепенных эволюционных изменений родственных видов

– Разработали теорию зародышевых листков для позвоночных

– Выдвинул теорию происхождения многоклеточных организмов от общего предка - гипотетического организма фагоцителлы

– Обосновывает наличие в прошлом предка многоклеточных - фагоцителлы и предлагает считать его живой моделью многоклеточное животное - трихоплакса

– Обосновали биологический закон «Онтогенез есть краткое повторение филогенеза»

– Утверждал, что многие органы многофункциональны; в новых условиях среды одна из второстепенных функций может стать более важной и заменить прежнюю главную функцию органа

– Выдвинул гипотезу возникновения билатеральной симметрии живых организмов

7. Назовите известные вам естественные науки, составляющие биологию. Какие из них возникли в конце XX в.?

На границах смежных дисциплин возникали новые биологические направления: вирусология, биохимия, биофизика, биогеография, молекулярная биология, космическая биология и многие другие. Широкое внедрение математики в биологию вызвало рождение биометрии. Успехи экологии, а также всё более актуальные проблемы охраны природы способствовали развитию экологического подхода в большинстве отраслей биологии. На рубеже XX и XXI вв. с огромной скоростью начала развиваться биотехнология - направление, которому, несомненно, принадлежит будущее.

Подумайте! Вспомните!

1. Проанализируйте изменения, произошедшие в науке в XVII-XVIII вв. Какие возможности они открыли перед учёными?

Новую эру в развитии биологии ознаменовало изобретение в конце XVI в. микроскопа. Уже в середине XVII в. была открыта клетка, а позднее обнаружен мир микроскопических существ - простейших и бактерий, изучено развитие насекомых и принципиальное строение сперматозоидов. В XVIII в. шведский натуралист Карл Линней (1707-1778) предложил систему классификации живой природы и ввёл бинарную (двойную) номенклатуру для наименования видов. Карл Эрнст Бэр (Карл Максимович Бэр) (1792-1876), профессор Петербургской медико-хирургической академии, изучая внутриутробное развитие, установил, что зародыши всех животных на ранних этапах развития схожи, сформулировал закон зародышевого сходства и вошёл в историю науки как основатель эмбриологии. Первым биологом, который попытался создать стройную и целостную теорию эволюции живого мира, стал французский учёный Жан Батист Ламарк (1774-1829). Палеонтологию, науку об ископаемых животных и растениях, создал французский зоолог Жорж Кювье (1769-1832). Огромную роль в понимании единства органического мира сыграла клеточная теория зоолога Теодора Шванна (1810-1882) и ботаника Маттиаса Якоба Шлейдена (1804-1881).

2. Как вы понимаете выражение «прикладная биология»?

4. Проанализируйте материал параграфа. Составьте хронологическую таблицу крупных достижений в области биологии. Какие страны в какие временные периоды были основными «поставщиками» новых идей и открытий? Сделайте вывод о связи между развитием науки и другими характеристиками государства и общества.

Страны, в которых произошли основные биологические открытия относятся к развитым и активно развивающимся странам.

5. Приведите примеры современных дисциплин, возникших на стыке биологии и других наук, не упомянутые в параграфе. Что является предметом их изучения? Попробуйте предположить, какие разделы биологии могут возникнуть в будущем.

Примеры современных дисциплин, возникших на стыке биологии и других наук: палеобиология, биомедицина, социобиология, психобиология, бионика, физиология труда, радиобиология.

Разделы биологии могут возникнуть в будущем: биопрограммирование, ИТ-медицина, биоэтика, биоинформатика, биотехнология.

6. Обобщите информацию о системе биологических наук и представьте её в виде сложной иерархической схемы. Сравните схему, созданную вами, с результатами, которые получились у ваших одноклассников. Одинаковы ли ваши схемы? Если нет, объясните, в чём их принципиальные отличия.

1) Человечество не может существовать без живой природы. Отсюда жизненно необходимо сохранять ее

2) Биология возникла в связи с решением очень важных для людей проблем.

3) Одной из них всегда было более глубокое постижение процессов в живой природе, связанных с получением пищевых продуктов, т.е. знание особенностей жизни растений и животных, их изменение под воздействием человека, способов получения надежного и все более богатого урожая.

4) Человек – продукт развития живой природы. Все процессы нашей жизнедеятельности подобны тем, которые происходят в природе. И поэтому глубокое понимание биологических процессов служит научным фундаментом медицины.

5) Появление сознания, означающее гигантский шаг вперед в самопознании материи, тоже не может быть понято без глубоких исследований живой природы, по крайней мере, в 2-х направлениях – возникновение и развитие мозга как органа мышления (до сих пор загадка мышления остается неразрешенной) и возникновение социальности, общественного образа жизни.

6) Живая природа является источником многих необходимых для человечества материалов и продуктов. Нужно знать их свойства, чтобы правильно использовать, знать, где искать их в природе, как получать.

7) Та вода, которую мы пьем, точнее - чистота этой воды, ее качество тоже определяется в первую очередь живой природой. Наши очистные сооружения лишь завершают тот огромный процесс, который незримо для нас происходит в природе: вода в почве или водоеме многократно проходит через тела мириадов беспозвоночных, фильтруется ими и, освобождаясь от органических и неорганических остатков, становится такой, какой мы знаем ее в реках, озерах и ключах.

8) Проблема качества воздуха и воды – одна из экологических проблем, а экология – биологическая дисциплина, хотя современная экология давно перестала быть только ею и включает в себя много самостоятельных разделов, зачастую принадлежащих к разным научным дисциплинам.

9) В результате освоения человеком всей поверхности планеты, развития сельского хозяйства, промышленности, вырубки лесов, загрязнения материков и океанов все большее число видов растений, грибов, животных исчезает с лица Земли. Исчезнувший вид восстановить невозможно. Он является продуктом миллионов лет эволюции и обладает уникальным генофондом.

10) В данный момент особенно быстро развиваются молекулярная биология, биотехнология и генетика.

8. Организационный проект. Выберите важное событие в истории биологии, годовщина которого приходится на текущий или следующий год. Разработайте программу вечера (конкурса, викторины), посвящённого этому событию.

Викторина:

– Разделение на группы

Вступительное слово – описание события, историческая справка события, ученого

– Придумать название команд (по теме викторины)

– 1 раунд – простой: например, закончить предложение: Защитная реакция растений на изменение длины светового дня (листопад).

– 2 раунд – двойной: например, найди пару.

– 3 раунд – сложный: например, изобразить схему процесса, нарисовать явление.

Конец XX века и начало XXI , повлекли за собой вереницу открытий. Новые открытия в биологии выстраивают перед собой кучу вопросов, которые заставляют задумать ученых о том, что все не так просто в этом мире. Поиск истины – вот главная цель исследователей.

Открытия в биологии XX века

В 1951 году исследователь Эрвин Чаргаффу пришел к одному выводу, который в корне изменил взгляд на структуру нуклеиновых кислот. Ранее считалось, что все нуклеиновые кислоты созданы из тетра-блоков, поэтому лишены специфичности. В течение трех лет ученый занимался исследованием и, наконец, смог доказать, что нуклеиновые кислоты, полученные из разных источников, отличаются своим составом друг от друга – они специфичны. Ученый выстроил модель ДНК, которая своим видом была похожа на двойную спираль, при помещении на плоскость она была похожа на лестницу. Было выявлено, что строение одной отдельно взятой ветки ДНК определяет строение другой ее ветки – это связано с тем, что основание примыкающих определяет последовательность других направляющих. Таким образом, было определено новое свойство ДНК – комплиментарность.

Далее были необходимы исследования в области молекулярной биологии, которые бы провели расшифровку механизма репликации и транскрипции ДНК. Ученые предположили, что нить раскручивается, ее нити расходятся, а далее, в соответствии с правилом комплиментарности, из каждой нити образовывается молекула. Чуть позже опыты подтвердили данную гипотезу.

В 1954 году Георгий Антонович Гамов, на основании исследования Эрвина Чаргаффа, предположил, что аминокислоты закодированы из сочетания трех нуклеотидов.

В 1961 году французские ученые Жак Моно и Франсуа Жакоб воссоздали схему, регулирующую активные гены. Ученые говорили о том, что ДНК имеет не только информационные гены, но и гены-операторы и гены-регуляторы.

Новые открытия в биологии XXI века

В 2007 году объединение ученых университета Висконсис-Мэдисон и Киотского университета провели один эксперимент, благодаря которому клетки кожи взрослого человека стали вести себя как стволовые клетки эмбриона. Клетка смогла трансформироваться практически в любой вид. Финансовые рамки можно отбросить, ведь таким образом, клетки из ДНК человека могут стать органом для пересадки. Выращенный таким способ орган, не будет отторгаться организмом пациента.

Исследование «Геном человека», завершилось в 2006 году. Данный проект был назван самым важным исследованием в области биологии. Главная цель работы – определить последовательность нуклеотидов, а также изучить около 20 000 тыс. генов человека. Под руководством ученого Джеймса Уотсона, в 2000г. была представлена часть структуры генома, а в 2003г. исследование структуры были завершены. Невзирая на то, что официально «Геном человека» был закончен в 2006 году, анализ некоторых участков продолжается и сегодня. Данное исследование открывает новые теории эволюции. Знания, полученные в ходе работы, уже активно используются в медицине.

В XX веке биология как наука шла вперед большими шагами, а начало XXI века уже примечательно открытиями. Можно предположить, что новые открытия в биологии откроют много тайн и загадок, которые, возможно, смогут перевернуть все былые знания и утвержденные теории.

Десятка значимых открытий первого десятилетия XXI века – видео

Лекция:


Биология как наука


Отдельной наукой биология стала в 19-м веке, когда термин «биология» начали использовать сразу несколько ученых – Жан Батист Ламарк и Готфрид Рейнхольд Тревиранус в 1802 г и Фридрих Бурдах в 1800. До этого изучением некоторых аспектов живого занимались естественная история и медицина.


Объектом изучения биологии является жизнь в любых ее проявлениях – эволюция, распределение живого на планете, его структура, процессы функционирования, классификация, взаимоотношения организмов между собой и с окружающей средой.


Основой современной биологии являются 5 базовых принципов:

    клеточная теория;

    генетика;

    эволюция;

    гомеостаз;

Методы биологии


Методами биологии называются приемы, используемые учеными для приобретения новых знаний о живых организмах.

Основным правилом для любого ученого является принцип «ничего не принимать на веру» – каждое явление должно быть точно изучено и о нем должно быть получено достоверное знание.


Методами биологии называют приемы, с помощью которых строится система точного научного знания. К ним относятся:

    Наблюдение. Первое столкновение ученых с чем-то еще не изученным.

    Описание явления, нового организма, его особенностей;

    Систематизация. Это процесс соотнесения нового знания с уже имеющимися системами – определение места вновь открытого организма на древе эволюции, его химического строения, особенностей размножения и других свойств с уже имеющимися системами знания;

    Сравнение. Поиск похожих явлений, изучение уже встречавшихся подобных свидетельств других ученых, описаний и неоконченных исследований;

    Эксперимент. Проведение серий экспериментов для подтверждения или опровержения новой теории или гипотезы.

    Аналитический метод. Подразумевает сбор и сравнение всей информации по какому-либо вопросу.

    Исторический метод. Позволяет изучить закономерности исторического развития организмов, обращаясь к уже имеющемуся знанию.

    Моделирование. Построение и расчет возможных вариантов строения организма, функционирования его органов, его взаимодействия с другими живыми организмами. Это могут быть компьютерные модели, трехмерные модели строения, математический метод.

Используются универсальные, общие для всех наук правила построения научных теорий :

    наблюдение какого-либо явления, свойства живого организма, его особенности;

    выдвижение гипотезы – как и почему возможен наблюдаемый феномен, его предварительное объяснение на базе ранее известных знаний;

    эксперимент – постоянно ли явление или имеет случайный характер, одинаково ли проявляется при изменении условий эксперимента, какие конкретно условия оказывают на него влияние;

    после экспериментального подтверждения гипотеза становится теорией ;

    для проверки теории и поиска точных ответов на вопросы, ученые проводят дополнительные эксперименты.

А также применяются методы, свойственные каждой конкретной науке, для биологии это:

    генеалогический . Поиск предков, соотнесение вновь открытого организма с возможными родственными на древе эволюции;

    культура тканей. Для изучения физиологических особенностей организма, влияния на него различных факторов проводятся исследования образцов его тканей;

    эмбриологический. Изучение процесса развития живого организма до его рождения;

    цитогенетический. Исследования генома и строения клеток;

    биохимический. Химические исследования клеточного содержимого, тканей, внутренней среды и выделений организма.

Биологических методов очень много, кроме вышеперечисленных в науке широко используются: гибридизация, палеонтологический, центрифугирование и многие другие.


Роль биологии в формировании естественнонаучной картины мира


Знания о биосфере помогают человечеству делать прогнозы долгосрочных и краткосрочных процессов на Земле и стараться управлять ими. Так, зная о роли зеленых растений в формировании кислородной среды планеты – человек понимает важность сохранения лесов. Владея знаниями о взаимоотношениях организмов – в настоящее время человечество уже не допускает опасных экспериментов по внесению в устойчивую экосистему новых животных и растений, это даже прописано в международном законодательстве. Таких ошибок, как завоз кроликов в Австралию или енотовидной собаки на Дальний Восток СССР человек уже не допускает. В настоящее время в Калифорнии проблемой стали заносные виды растений, угнетающие реликтовые ценные виды местной флоры.

Биологические науки позволяют решить многие проблемы с обеспечение продовольственной безопасности. Выведение новых сортов растений и видов животных, позволяют повысить урожайность, защитить посевы от вредителей, увеличить производительность сельского хозяйства.


Генетика и физиология на настоящий момент играют очень важную роль в получении медицинских знаний, способствуя развитию новых методов лечения, созданию лекарств, позволяя победить считавшиеся неизлечимыми заболевания и патологии, а также заранее предупредить и остановить их развитие.


С помощью микробиологии разрабатываются вакцины и сыворотки, новые сорта пищевых продуктов и напитков.


Дендрология и экология позволяют обеспечить восполняемым природным ресурсом – древесиной строительную и целлюлозно-бумажную отрасли промышленности.


Энтомология и ботаника – помогают разработать и улучшить уже известные виды тканей.


Любая из биологических наук, включая палеонтологию и прочие, кажущиеся неважными – оказывает сильное влияние на представление знаний об истории развития планеты, месте человека среди живых организмов, помогает повысить качество жизни и защитить от влияния вредных факторов внешней среды.





Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.