Резонансные источники питания с высоким кпд схема. Резонансный трансформатор и некоторые его применения. Отопление от Андреева на резонансном дросселе с Ш-образным сердечником от трансформатора и лампах ДРЛ

Принцип вашему вниманию устройство с КПД выше 100%, вы скажете что вот это фейк и все не по настоящему, но это неправда. Собрано устройство на отечественных деталях. В конструкции трансформатора есть одна особенность, трансформатор Ш-образный с зазором по середине, но в зазоре есть неодимовый магнит, который задает начальный импульс на катушку обратной связи. Катушки съема можно мотать в любую сторону, но при этом нужна ювелирная точность в их намотке, они должны иметь одинаковую индуктивность. Если это не соблюсти, то резонанса не будет, об этом вас проинформирует вольтметр, подключенный параллельно к батарейке. Особого применения в данной конструкции я не нашел, но можно подключить источник света в виде ламп накаливания.

Технических характеристики при резонансе:
КПД выше 100%
Обратный ток 163-167 миллиампер (сам не знаю как это так происходит, но батарея заряжается)
Ток потребления 141 миллиампер (получается что 20 миллиампер - это свободная энергия и идет на заряд батареи)

Красный провод катушка L1
Зеленый провод катушка L2
Черный провод это катушки съема

Настройка

На своем опыте убедился, что катушка Л1 намотанная одинаковым проводом, легче настраивается на резонанс с Л2, создавая больший ток чем потребляется. Как я понял создается ферромагнитный резонанс, что питает нагрузку и заряжает батарею большим током. Для настройки резонанса должны быть две одинаковые катушки или одна, при включенном устройстве они двигаются под нагрузкой лампы а виде накаливания (в моем случае лампа 12 Вольт 5 Ватт). Для настройки подключим вольтметр параллельно батарейке и начнем двигать катушки(у). При резонансе, напряжение на батарейке должно начать повышаться. Дойдя до определенного порога, батарейка перестанет заряжаться и разряжаться. На транзистор нужно установить большой радиатор. С случае с двумя катушками все сложнее, так как надо намотать их так, чтобы индуктивности практически не отличались, с разными нагрузками расположение правой и левой катушек будут меняться. Если не соблюсти эти правила настройки, то резонанса может и не произойти, при этом мы получим простой повышающий преобразователь с высоким КПД. Параметры катушек у меня такие 1:3, то есть Л1 8 витков, Л2 24 витка обе с одинаковым сечением провода. Л1 мотается поверх Л2. Съемные катушки без разницы каким проводом, но у меня 1.5мм.

Фото

Готовое устройство в безрезонансном состоянии (катушки подключены последовательно)

Проба самозапитки от съемной катушки через диод. (Результат: неудача, работает 14 секунд с затуханием)

Состояние резонанса на одной катушке без самозапитки через диод. Опыт удачен, с подключенной батарейкой преобразователь проработал 37 часов 40 минут, без потери напряжения на батарейке в начале опыта напряжение батарейки было 7.15 вольт, к концу 7.60 вольт. Данный опыт доказал, что преобразователь способен выдать КПД выше 100%. Для нагрузки использовал лампу накаливания 12 Вольт 5 Ватт. К попытке использовать другие устройства я отказался, так как магнитное поле вокруг устройства очень сильное и создает помехи в радиусе полтора метра, радио перестает работать в радиусе 10 метров.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1 Биполярный транзистор

КТ819А

1 КТ805 В блокнот
C1 Конденсатор 0.1 мкФ 1 В блокнот
C2 Электролитический конденсатор 50 мкФ 25 в 1 В блокнот
R1 Резистор

2.2 кОм

1 В блокнот
R2 Резистор

62 Ом

1 В блокнот
Bat1 Батарея 12 Вольт 1

Использование: разработка высокочастотных импульсных источников питания. Сущность изобретения: источник питания держит ключевой транзисторный преобразователь 1 напряжения, выполненный в виде полумостовой схемы на транзисторах 4,5 и конденсаторах 6,7 и блок 25 управления частотой, выполненный в виде последовательно соединенных узла 26 преобразования напряжения в сопротивление и узла 27 преобразования сопротивления в частоту. В выходной цепи преобразователя 1 включен резонансный контур, выполненный на дросселе 8 и конденсаторах 9, 10. Стабилизация изменения рабочей частоты преобразователя 1 в зависимости от изменения выходного напряжения. Формирование специальной формы базового тока транзисторов 4, 5 с помощью блока 25 и цепочек, выполненных на элементах 15-22, снижает потери как при включенном, ток и при выключенном транзисторах 4, 5 преобразователя 1. 3 з.п. ф-лы, 3 ил.

Изобретение относится к электротехнике и может быть использовано при разработке высококачественных импульсных источников питания. Известен импульсный стабилизатор напряжения, содержащий двухтактный полумостовой преобразователь напряжения, входом соединенный со входными выводами, а выходом через выпрямитель и фильтр с выходными выводами, широтно-импульсный модулятор, выходы которого подключены к управляющим входам двухтактного полумостового преобразователя напряжения, генератор прямоугольных колебаний, формирователь пилообразного напряжения, источник опорного напряжения и два транзистора (1). В известном устройстве решена техническая задача повышение КПД за счет использования для сравнения в широтно-импульсном модуляторе переменных напряжений: прямоугольного опорного и пилообразного, пропорционального входному напряжению. Получение таких напряжений и их сравнение требует меньше энергетических затрат. А использование тока источника опорного напряжения одновременно для управления транзисторами двухтактного полумостового преобразователя напряжения, наряду с применением пассивного ШИМ, дополнительно повышает КПД. Источники питания с ШИМ в настоящее время являются превалирующими. Однако они характеризуются слишком высокими потерями, поскольку относятся к схемам с так называемым жестким переключением. При жестком переключении включенный транзисторный ключ выключается в момент, когда через него протекает ток, а выключенный транзисторный ключ включается, когда на нем имеется напряжение и поэтому, чем чаще этот ключ включается и выключается, тем больше потери. При этом время переключения транзистора (длительность включения или выключения) должно быть возможно меньше. Таким образом недостатком известного устройства являются высокие потери, т.е. низкий КПД. В идеале для того, чтобы потери были минимальными, транзисторный ключ должен выключаться в тот момент, когда ток через него равен нулю (переключение при нулевом токе) и включаться, когда напряжение на нем равно нулю (переключение при нулевом напряжении). В настоящее время наилучшим решением для высокочастотных импульсных источников питания является использование резонансных схем. В отличие от источников питания с ШИМ резонансных схем "смягчают" режим переключения и таким образом способствуют уменьшению потерь на переключение. В результате резонансные источники питания при одной и той же рабочей частоте обеспечивают более высокий КПД. Известен резонансный источник питания, содержащий ключевой транзисторный преобразователь напряжения, входом соединений с входными выводами и выполненный в виде полумостовой схемы, в выходной цепи которой включен резонансный контур, состоящий из соединенных параллельно последовательной цепи на дросселе и первом конденсаторе и второго конденсатора, причем параллельно первому конденсатору включена первичная обмотка выходного трансформатора, вторичная обмотка которого через выпрямитель и фильтр соединена с выходными выводами, и блок управления частотой, выходы которого подключены к управляющим входам ключевого транзисторного преобразователя напряжения, силовые выводы транзисторов которого шунтированы блокирующими диодами (2). Известный источник питания является аналогом, наиболее близким к предлагаемому изобретению по совокупности существенных признаков. Однако и известный источник питания обладает значительными потерями при переключении, за счет того, что блок управления частотой вырабатывает колебания прямоугольной формы и, следовательно, ток управления транзистора преобразователя также имеет прямоугольную форму. Технической задачей данного изобретения является снижение потерь при переключении транзисторов ключевого транзисторного преобразователя напряжения и снижение мощности, потребляемой блоком управления частотой. Технический результат, который может быть получен при использовании изобретения, заключается в повышении КПД резонансного источника питания. Поставленная техническая задача достигается тем, что в резонансном источнике питания, содержащем ключевой транзистор преобразователь напряжения, входом соединений с выходами выводами и выполненный в виде полумостовой схемы, в выходной цепи которой включен резонансный контур, состоящий из соединенных параллельно последовательной цепи на дросселе и первом конденсаторе и второго конденсатора, причем параллельно первому конденсатору включена первичная обмотка выходного трансформатора, вторичная обмотка которого через выпрямитель и фильтр соединена с выходными выводами, и блок управления частотой, выходы которого подключены к управляющим входам ключевого транзисторного преобразователя напряжения, силовые выводы транзисторов которого шунтированы блокирующими диодами, блок управления частотой выполнен в виде последовательно соединенных двух базовых резисторов и диода и на дополнительном конденсаторе, включенном между общей точкой резисторов и свободным выводом диода, при этом управляющие входы транзисторов через соответствующие цепочки формирования базового тока соединены с соответствующими управляющими входами ключевого транзисторного преобразователя напряжения, а узел преобразования сопротивления в частоту выполнен в виде парафазного мультивибратора на четырех логических инверторах, третьим и четвертым конденсаторах, на дополнительном транзисторе и трех резисторах, причем логические инверторы соединены попарно-последовательно, соответственно, первый со вторым и третий с четвертым, третий конденсатор включен между выходом первого и входом третьего логических инверторов, а четвертый конденсатор включен между выходом третьего и выходом первого логических инверторов, первый резистор включен параллельно выходу узла преобразователя напряжения в сопротивление, через второй и третий резисторы соединенному с выходами, соответственно, первого и третьего логических инверторов, выходы второго и четвертого логических инверторов соединены с первичной обмоткой дополнительного трансформатора, две вторичные обмотки которого использованы в качестве выходов узла преобразования сопротивления в частоту и выходов блока управления частотой, входом в качестве которого использован вход узла преобразования напряжения в сопротивление, подключенный к выходным выводам. Кроме того, узел преобразования напряжения в сопротивление выполнен на дополнительном транзисторе, выход которого использован в качестве выхода узла преобразования напряжения в сопротивление, переменном резисторе, использованном в качестве входа узла преобразования напряжения в сопротивление и четвертом резисторе, включенном между входом и выходом узла преобразования напряжения в сопротивление, причем, регулировочный вывод переменного резистора соединен с базой дополнительного транзистора. Логические инверторы могут быть выполнены на элементах 2И-НЕ. Для обеспечения запуска преобразователя напряжения, дополнительный трансформатор снабжен пусковой обмоткой, включенной в выходную цепь ключевого транзисторного преобразователя напряжения последовательно с резонансным контуром. Изобретение иллюстрируется чертежами, где на фиг. 1 представлена схема резонансного источника питания, на фиг. 2 форма базового тока транзисторов ключевого транзисторного преобразователя напряжения, на фиг. 3 его регулировочная характеристика. Резонансный источник питания (фиг. 1) содержит ключевой транзисторный преобразователь 1 напряжения, входом соединенный с выходными выводами 2, 3 и выполненный в виде полумостовой схемы на транзисторах 4, 5 и конденсаторах 6, 7, в выходной цепи которой включен резонансный контур, состоящий из соединенных параллельно последовательной цепи на дросселе 8 и первом конденсаторе 9 и второго конденсатора 10, выходной трансформатор 11, первичная обмотка которая подключена параллельно конденсатору 9, а вторичная -через выпрямитель 12 и фильтр 13 соединена с выходом ключевого транзисторного преобразователя напряжения, подключенным к выходным выводам, к которым подключена нагрузка 14, цепочки формирования базового тока, выполненные в виде последовательно соединенных базовых резисторов 15 и 16, 17, 18 и диодов 19 и 20, и на дополнительных конденсаторах 21 и 22, включенных между общей точкой резисторов 15, 16 и 17, 18 и свободными выводами диодов 19 и 20 соответственно, блокирующие диоды 23 и 24, шунтирующие силовые выводы транзисторов 4 и 5, блок управления частотой 25, выполненный в виде последовательно соединенных узлов преобразования напряжения в сопротивление 26 и узла преобразования сопротивления в частоту 27. Узел 27 преобразования сопротивления в частоту содержит парафазный мультивибратор на четырех логических инверторах 28, 29, 30, 31, третьем конденсаторе 32, четвертом конденсаторе 33, дополнительном трансформаторе 34 и трех резисторах 35, 36, 37, причем логические инверторы соединены попарно-последовательно, 28 с 29 и 30 с 31, третий конденсатор 32 включен между выходом логического инвертора 28 и входом логического инвертора 30, четвертый конденсатор 33 включен между выходом логического инвертора 30 и входом логического инвертора 28, первый резистор 35 включен параллельно выходу узла 26 преобразования напряжения в сопротивление, через второй резистор 36 и третий резистор 37, соединенные со входами, соответственно, логического инвертора 28 и логического инвертора 30, выходы логического инвертора 29 и логического инвертора 31 соединены с первичной обмоткой 38 дополнительного трансформатора 34, вторичные обмотки 39 и 40 которого использованы в качестве выходов узла 27 преобразования сопротивления в частоту и выходы блока 25 управления частотой. Логические инверторы 28, 29, 30, 31 могут быть выполнены, например, на элементах 2И-НЕ. В качестве входа блока 25 управления частотой использован вход узла 26 преобразования напряжения в сопротивление, выполненного на дополнительном транзисторе 41, выход которого использован в качестве выхода узла 26 преобразования напряжение в сопротивление, на переменном резисторе 42, использованном в качестве входа узла 26 преобразования напряжения в сопротивлении, и четвертом резисторе 43, включенном между входом и выходом узла 26 преобразования напряжения в сопротивление, причем регулировочный вывод переменного резистора 42 соединен с базой дополнительного транзистора 41. Вход блока 25 управления частотой соединен с нагрузкой 14. Для обеспечения пуска ключевого транзисторного преобразователя напряжения 1 дополнительный трансформатор 34 снабжен пусковой обмоткой 44, включенной в выходную цепь ключевого транзисторного преобразователя 1 последовательно с резонансным контуром. Питание парафазного мультивибратора осуществляют от отдельного источника питания и от источника опорного напряжения (элементы 45, 46) путем подачи на него напряжения с выхода выпрямителя 12 ключевого транзисторного преобразователя напряжения 1 через емкостной фильтр 47. Резисторы 48, 49, 50, 51 задают необходимый рабочий режим транзисторов 4 и 5. Резонансный источник питания работает следующим образом. При включении источника питания ключевой транзисторный преобразователь 1 напряжения возбуждается за счет положительной обратной связи пусковой обмотки 44 дополнительного трансформатора 34 и начинает генерировать низкочастотные импульсы. На вторичной обмотке выходного трансформатора 11 появляется напряжение, которое через выпрямитель 12 запитывает микросхему на логических инверторах 28.31 парафазного мультивибратора. Мультивибратор начинает генерировать высокочастотные импульсы, которые поступают через трансформатор 34 на цепочке формирования базового тока транзисторов 4 и 5. Благодаря формированию базового тока транзисторов 4 и 5 преобразователя 1 с помощью блока 25 управления частотой и цепочек формирования базового тока (элементы 15.22) достигается уменьшение потерь в транзисторах 4 и 5 при их переключении. В момент t 1 (фиг. 2) происходит включение транзистора 4 (включение при нулевом напряжении). При таком резком скачке базового тока уменьшаются потери при включении транзистора. Транзистор включен и насыщен в течение времени t 1 t 2 . При этом базовый ток линейно уменьшается до значения i б мин. при котором транзистор еще насыщен. При значении i б время рассасывания t рас транзистора при его выключении будет минимальным, что приводит к уменьшению потерь при выключении транзистора. В течение времени t 2 t 3 , когда базовый ток принимает отрицательные значения, время выключения транзистора за счет дополнительного уменьшения t рас. уменьшается, благодаря чему снижаются тепловые потери при выключении транзистора. Таким образом, благодаря формированию базового тока транзисторов 4 и 5 специальной формы (фиг. 2) уменьшаются потери как при включении, так и при выключении транзисторов преобразователя 1. Когда транзистор 4 включается, ток в дросселе 8 начинает постепенно нарастать. Этот ток равен сумме тока в первичной обмотке трансформатора 11 и зарядного тока конденсатора 9. Когда напряжение на конденсаторе 9 и первичной обмотке трансформатора 11 сравняется с входным напряжением, падение напряжения на дросселе 8 станет равным нулю, после этого энергия, запасенная в дросселе 8, начинает заряжать конденсатор 9. Через интервал времени, который задается собственной резонансной частотой контура, ток в дросселе 8 и, следовательно, в транзисторе 4 станет равным нулю. Затем ток через дроссель 8 изменит направление и конденсатор 9 начинает разряжаться, поддерживая протекание тока через диод 23. При этом транзистор 4 выключается (переключение при нулевом токе). Резонансный полупериод зарядки конденсатора 10 начинается после выключения транзистора 4 и заканчивается перед включением транзистора 5. Когда оба транзистора выключены, энергия передается от дросселя 8 к конденсатору 10. По мере зарядки конденсатора 10 напряжение на транзисторе 4 увеличивается, а на транзисторе 5 уменьшается. Когда напряжение на транзисторе 5 спадает до нуля, происходит его включение без потерь, при этом диод 24 обеспечивает возврат энергии, оставшейся в дросселе 8, обратно на вход резонансного источника питания. Следующий полупериод идентичен первому и начинается, когда выключится транзистор 5. Теперь напряжение на транзисторе 5 будет возрастать, а напряжение на транзисторе 4 уменьшаться, и когда оно спадет до нуля, происходит включение транзистора 4 без потерь. Как и в других резонансных источниках питания, изменение рабочей частоты преобразователя 1 приводит к изменению выходного напряжения, причем рабочая частота преобразователя 1 выше его резонансной частоты, а рабочая точка преобразования расположена на правом склоне резонансной кривой контура (фиг. 3) на ее прямолинейном участке. Стабилизация выходного напряжения осуществляется за счет подачи напряжения отрицательной обратной связи с нагрузки 14 в блок 25 управления частотой и формирования в этом блоке импульсов управления транзисторами 4 и 5 преобразователя 17. В блоке 25 управления частотой осуществляется преобразование напряжения в сопротивление с помощью узла 26, а затем преобразование сопротивления в частоту с помощью узла 27. Модуляция частоты происходит за счет изменения сопротивления резистора 35, шунтируемого транзистором 41. Резистор 35 и конденсаторы 32, 33 и резисторы 36, 37 выполняют функцию времязадающих элементов парафазного мультивибратора. При уменьшении выходного напряжения от значения U 0 до U 2 за счет увеличения тока нагрузки частота парафазного мультивибратора уменьшается со значения f 1 до значения f 3 (фиг. 3), при этом выходное напряжение преобразователя 1 увеличивается до значения U 1 и компенсируется уменьшение выходного напряжения источника. Таким образом, выходное напряжение резонансного источника питания останется неизменным. Аналогично происходит стабилизация выходного напряжения за счет уменьшения тока нагрузки. На резонансной (регулировочной) характеристике (фиг. 3) рабочая точка преобразования смещается по линии f 1 , f 2 , f 3: чем больше ток в нагрузке, тем ближе рабочая точка к частоте и наоборот, чем меньше ток в нагрузке, тем ближе рабочая точка к частоте f 2 . При очень больших точка нагрузки или коротких замыканиях в нагрузке рабочая точка преобразования смещается влево за резонансную частоту f p , уменьшая напряжение практически до нуля (точка f 4 , фиг. 3). При этом защита от коротких замыканий источника питания осуществляется без применения каких-либо дополнительных элементов. Предложенная схема выполнения блока управления частотой, в частности, его узла преобразования сопротивления в частоту, является очень экономичной, т.к. отличается малым потреблением мощности. Таким образом данное изобретение позволяет повысить КПД резонансного источника питания.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Резонансный источник питания, содержащий ключевой транзисторный преобразователь напряжения, входом соединенный с входными выводами и выполненный в виде полумостовой схемы, в выходной цепи которой включен резонансный контур, состоящий из соединенных параллельно последовательной цепи на дросселе и первом конденсаторе и второго конденсатора, причем параллельно первому конденсатору включена первичная обмотка выходного трансформатора, вторичная обмотка которого через выпрямитель и фильтр соединена с выходом ключевого транзисторного преобразователя напряжения, подключенным к выходным выводам, и блок управления частотой, выходы которого подключены к управляющим входам ключевого транзисторного преобразователя напряжения, силовые выводы транзисторов которого шунтированы блокирующими диодами, отличающийся тем, что блок управления частотой выполнен в виде последовательно соединенных узла преобразования напряжения в сопротивление и узла преобразования сопротивления в частоту, в качестве транзисторов ключевого транзисторного преобразователя напряжения использованы биполярные транзисторы, базовые цепи которых снабжены цепочками формирования базового тока, выполненными в виде последовательно соединенных двух базовых резисторов и диода и на дополнительном конденсаторе, включенном между общей точкой базовых резисторов и свободным выводам диода, при этом управляющие входы транзисторов через соответствующие цепочки формирования базового тока соединены с соответствующими управляющими входами ключевого транзисторного преобразователя напряжения, а узел преобразования сопротивления в частоту выполнен в виде парафазного мультивибратора на четырех логических инверторах, третьем и четвертом конденсаторах, на дополнительном трансформаторе и трех резисторах, причем логические инверторы соединены попарно-последовательно, соответственно первый с вторым и третий с четвертым, третий конденсатор включен между выходом первого и входом третьего логических инверторов, а четвертый конденсатор включен между выходом третьего и входом первого логических инверторов, первый резистр включен параллельно выходу узла преобразования напряжения в сопротивление, через второй и третий резисторы соединенному с входами соответственно, первого и третьего логических инверторов, выходы второго и четвертого логических инверторов соединены с первичной обмоткой дополнительного трансформатора, две вторичные обмотки которого использованы в качестве выходов узла преобразования сопротивления в частоту и выходов блока управления частотой, входом, в качестве которого использован вход узла преобразования напряжения в сопротивление, подключенного к выходным выводам. 2. Источник питания по п.1, отличающийся тем, что узел преобразования напряжения в сопротивление выполнен на дополнительном транзисторе, выход которого использован в качестве выхода узла преобразования напряжения в сопротивление, переменном резисторе, использованном в качестве входа узла преобразования напряжения в сопротивление, и четвертом резисторе, включенном между входом и выходом узла преобразования напряжения в сопротивление, причем регулировочный вывод переменного резистора соединен с базой дополнительного транзистора. 3. Источник питания по пп.1 и 2 отличающийся тем, что логические инверторы выполнены на элементах 2И-НЕ. 4. Источник питания по пп.1 3, отличающийся тем, что дополнительный трансформатор снабжен пусковой обмоткой, включенной в выходную цепь ключевого транзисторного преобразователя напряжения последовательно с резонансным контуром.

Принцип реализации вторичной мощности за счёт применения дополнительных устройств, обеспечивающих энергией схемы, уже достаточно давно используется в большей части электроприборов. Этими устройствами являются блоки питания . Они служат для преобразования напряжения до необходимого уровня. БП могут быть как встроенными, так и отдельными элементами. Принципов преобразования электроэнергии существует два. Первый основан на применении аналоговых трансформаторов, а второй основан на использовании импульсных блоков питания. Разница между этими принципами довольно большая, но, к сожалению, не все её понимают. В этой статье разберёмся, как работает импульсный блок питания и чем же он так отличается от аналогового. Давайте же начнём. Поехали!

Первыми появились именно трансформаторные БП. Их принцип работы заключается в том, что они меняют структуру напряжения с помощью силового трансформатора, который подключён к сети 220 В. Там снижается амплитуда синусоидальной гармоники, которая направляется дальше к выпрямительному устройству. Затем происходит сглаживание напряжения параллельно подключенной ёмкостью, которая подбирается по допустимой мощности. Регулирование напряжения на выходных клеммах обеспечивается благодаря смене положения подстроечных резисторов.

Теперь перейдём к импульсным БП. Они появились несколько позже, однако, сразу завоевали немалую популярность за счёт ряда положительных особенностей, а именно:

  • Доступности комплектования;
  • Надёжности;
  • Возможности расширить рабочий диапазон для выходных напряжений.

Все устройства, в которых заложен принцип импульсного питания, практически ничем не отличаются друг от друга.

Элементами импульсного БП являются:

  • Линейный источник питания;
  • Источник питания Standby;
  • Генератор (ЗПИ, управление);
  • Ключевой транзистор;
  • Оптопара;
  • Цепи управления.

Чтобы подобрать блок питания с конкретным набором параметров, воспользуйтесь сайтом ChipHunt.

Давайте, наконец, разберёмся, как работает импульсный блок питания. В нём применяются принципы взаимодействия элементов инверторной схемы и именно благодаря этому достигается стабилизированное напряжение.

Сперва на выпрямитель поступает обычное напряжение 220 В, далее происходит сглаживание амплитуды при помощи конденсаторов ёмкостного фильтра. После этого выполняется выпрямление проходящих синусоид выходным диодным мостом. Затем происходит преобразование синусоид в импульсы высоких частот. Преобразование может выполняться либо с гальваническим отделением сети питания от выходных цепей, либо без выполнения такой развязки.

Если БП с гальванической развязкой, то сигналы высокой частоты направляются на трансформатор, который и осуществляет гальваническую развязку. Для увеличения эффективности трансформатора повышается частота.

Работа импульсного БП основана на взаимодействии трёх цепочек:

  • ШИМ-контроллера (управляет преобразованием широтно-импульсной модуляции);
  • Каскада силовых ключей (состоит из транзисторов, которые включаются по одной из трёх схем: мостовой, полумостовой, со средней точкой);
  • Импульсного трансформатора (имеет первичную и вторичную обмотки, которые монтируются вокруг магнитопровода).

Если же блок питания без развязки, то ВСЧ разделительный трансформатор не используется, при этом сигнал подаётся сразу на фильтр низких частот.

Сравнивая импульсные блоки питания с аналоговыми, можно увидеть очевидные преимущества первых. ИБП имеют меньший вес, при этом их КПД значительно выше. Они имеют более широкий диапазон питающих напряжений и встроенную защиту. Стоимость таких БП, как правило, ниже.

Из недостатков можно выделить наличие высокочастотных помех и ограничений по мощности (как при высоких, так и при низких нагрузках).

Проверить ИБП можно при помощи обычной лампы накаливания. Обратите внимание, что не следует подключать лампу в разрыв удалённого транзистора, поскольку первичная обмотка не рассчитана на то, чтобы пропускать постоянный ток, поэтому ни в коем случае нельзя допускать его пропускания.

Если лампа светится, значит, БП работает нормально, если же не светится, то блок питания не работает. Короткая вспышка говорит о том, что ИБП блокируется сразу после запуска. Очень яркое свечение свидетельствует об отсутствии стабилизации выходного напряжения.

Теперь вы будете знать на чём основан принцип работы импульсного и обычного аналогового блоков питания. Каждый из них имеет свои особенности строения и работы, которые следует понимать. Также вы сможете проверить работоспособность ИБП при помощи обычной лампы накаливания. Пишите в комментариях была полезной для вас эта статья и задавайте любые интересующие вопросы по рассмотренной теме.

Сущность изобретения: в резонансном источнике питания, содержащем выпрямительный блок, фазные конденсаторы, включенные со стороны переменного тока, и индуктивность, подключенную к выходу выпрямительного блока, фазные конденсаторы подключены последовательно с соответствующими входами выпрямительного блока. 3 ил.

Изобретение относится к электротехнике, в частности к устройствам для питания дугового разряда. В настоящее время разработано значительное количество конструкций источников питания сварочной и плазменной дуги, отличающихся друг от друга как схемным решением, так и принципом работы. Для питания дугового разряда чаще всего применяются источники с крутопадающими или вертикальными характеристиками (источники тока). По схемным решениям преимущественное распространение получили источники с дросселями насыщения, источники на управляемых приборах и параметрические источники (А. В. Донской, В. С. Клубникин. Электроплазменные процессы и установки в машиностроении. Л. Машиностроение, 1979, 164 с.). Дуговые установки с дросселями насыщения получили широкое распространение в связи с простотой и надежностью в эксплуатации. Формирование внешней характеристики производится размагничиванием дросселей насыщения. Дуговые электроустановки на управляемых приборах чаще всего представляют собой источники питания на управляемых вентилях тиристорах. Рабочий ток таких источников определяется углом отпирания вентилей, что ведет к необходимости установки сглаживающих дросселей в цепи постоянного тока. К недостаткам источников питания на полупроводниковых вентилях, управляемых углом открывания, следует отнести инерционность, обусловленную синхронностью работы управляемых вентилей с питающим напряжением, снижение коэффициента мощности, значительную пульсацию и влияние на питающую сеть, особенно при малых нагрузках. При глубоком регулировании эти недостатки могут привести к нарушению технологического процесса и неустойчивому горению дуги (А. В. Донской, В. С. Клубникин. Электроплазменные процессы и установки в машиностроении. Л. Машиностроение, 1979, 168 с.). Параметрические источники питания дугового разряда построены на пассивных индуктивно-емкостных элементах. Как показали исследования, введение в схему реактивных элементов, незначительно снижая КПД установки, обеспечивает хорошую стабилизацию тока, высокий коэффициент мощности и слабое влияние источника питания на форму напряжения питающей сети. Рассматриваемый тип источников может широко применяться в электродуговых установках (Б. Е. Патон и др. Плазменные процессы в металлургии и технологии неорганических материалов. М. Наука, 1973, 244 с.). К основным недостаткам таких установок следует отнести сложность регулирования, которое может быть осуществлено тремя способами: плавным изменением питающего напряжения, рассчитанным на полную проходную мощность, что приемлемо лишь для маломощных установок; синхронным изменением индуктивности и емкости реактивных элементов, что трудно осуществить технически, причем разбаланс индуктивного и емкостного сопротивлений резко ухудшает стабилизирующие свойства схемы; изменением коэффициента трансформации силового транcформатора, например, за счет изменения числа витков (А. В. Донской, В. С. Клубникин, Электроплазменные процессы и установки в машиностроении. Л. Машиностроение, 1979, 170 с.). Известен источник постоянного тока, содержащий трансформатор, имеющий первичную обмотку и по меньшей мере одну вторичную обмотку, причем первичная обмотка подключена к источнику переменного тока, cистему конденсаторов, соединенных параллельно вторичной обмотке. Емкостное сопротивление системы конденсаторов равно индуктивному сопротивлению вторичной обмотки. При этом образуется резонансный индуктивно-емкостный контур. Специальное устройство преобразует выходной сигнал, поступающий с контура, в постоянный (патент США N 4580029, кл. B 23К 9/00). На фигуре 1 приведена принципиальная схема известного источника питания. Источник, подключенный к питающей сети через трансформатор Т, содержит вторичную обмотку L 2 , систему конденсаторов С, выпрямитель В, дроссель L, нагрузку R. Формирование падающей ВАХ известного устройства осуществляется шунтированием системы конденсаторов С изменяющимся значением сопротивления нагрузки и при R 0 емкостное сопротивление контура отсутствует, нарушается условие резонанса, общее сопротивление цепи возрастает и ограничивает величину тока короткого замыкания. Увеличение сопротивления нагрузки приводит к повышению тока перезаряда конденсаторов и соответствующему повышению напряжения. Необходимым условием работоспособности известного устройства является равенство индуктивного и емкостного сопротивлений колебательного контура. Однако известно, что при равенстве индуктивного и емкостного сопротивлений ток в контуре определяется только общим активным сопротивлением цепи и может достичь значительных величин. В частности, это должно выражаться в повышенном значении тока холостого хода. Следующей особенностью известного устройства является пониженное значение КПД источника питания, т. к. параллельно току, снимаемому с выпрямительного устройства, существуют ток перезаряда системы конденсаторов С и соответствующие потери энергии. Индуктивность L, очевидно, предназначена для сглаживания пульсаций, т.к. для трехфахзной схемы известного устройства индуктивность L 1 не предусматривается. Целью настоящего изобретения является упрощение схемы и повышение эффективности работы. Поставленная цель достигается тем, что в резонансном источнике питания, содержащем выпрямительный блок, фазные конденсаторы, включенные со стороны переменного тока, и индуктивность, подключенную к входу выпрямительного блока, фазные конденсаторы подключены последовательно с соответствующими входами выпрямительного блока. Предлагаемый источник питания (для варианта однофазной питающей сети) изображен на фиг. 2 и содержит конденсатор С, выпрямительный блок В, индуктивность L, нагрузку R (дуговой промежуток). Работа предлагаемого устройства основана на взаимодействии напряжения на емкостном сопротивлении конденсатора С и напряжения на индуктивности L, включенной по постоянному току, осуществляемом посредством коммутирующего элемента В, преобразующего переменный ток в постоянный. При закорачивании дугового промежутка в цепи устанавливается ток максимального значения. При этом индуктивность, подключенная по постоянному току, представляет собой сглаживающий дроссель. Пульсации выпрямленного тока незначительны, сопротивление дросселя определяется в основном активным сопротивлением обмотки. Таким образом, падение напряжения на дросселе незначительно, а основное падение напряжения происходит на конденсаторе С, сопротивление которого определяет ток короткого замыкания. При образовании дугового промежутка резко возрастает активное сопротивление цепи, снижающее ток дросселя. Поскольку величина пульсации на дросселе находится в обратной зависимости от соотношения /L/R, где - циклическая частота, L индуктивность, R сопротивление нагрузки (И. И. Белопольский. Источники питания радиоустройств. М. Энергия, 1971, 92 с.), то увеличение сопротивления приводит к увеличению пульсаций, т. е. переменной составляющей в напряжении, приложенном к дросселю. Снижение тока при увеличении дугового промежутка приводит к уменьшению напряжения на конденсаторе, т. к. U c X c I, где U c напряжение на емкости, X c реактивное емкостное сопротивление, I ток через емкость. Ввиду того, что напряжения на индуктивности и емкости противофазны, общее реактивное сопротивление цепи падает. Таким образом, увеличение сопротивления с увеличением дугового промежутка приводит к уменьшению реактивного сопротивления и увеличению напряжения на последнем. На фиг. 3 представлены временные диаграммы работы источника питания, где i R кривая тока нагрузки, i 1 , i 2 кривые тока выпрямителя, U R напряжение на нагрузке, U L напряжение на индуктивности, U c напряжение на емкости, кривые тока конденсатора. Для трехфазной питающей сети принцип работы аналогичен. Отличительной особенностью источника предлагаемого схемного решения является возможность работы без трансформатора, при этом устройство преобразует жесткую ВАХ цепи в крутопадающую без опасности короткого замыкания и ограничивает потребляемую мощность в зависимости от условий горения разряда. В предлагаемой схеме отсутствует колебательный контур по переменному току питания, а ток, протекающий через блок конденсаторов С, соответствует рабочему току источника питания. Как показали практические исследования предлагаемого устройства, напряжение на дуговом промежутке при увеличении его длины и электрическая мощность изменяются в несколько раз за счет перераспределения напряжений на реактивных элементах источника питания. Исследования проводились в интервале токов от 5 до 100 А, напряжение холостого хода 220 В. Работа источника характеризуется высокой устойчивостью горения дугового разряда, достигаемый КПД свыше 80% При необходимости изменения рабочего напряжения допустимо использовать в отличие от известного устройства трансформатор без рассеяния, что повышает эффективность работы источника питания.

Формула изобретения

Резонансный источник питания с крутопадающей внешней характеристикой, содержащий выпрямительный блок, фазные конденсаторы, включенные со стороны переменного тока, и индуктивность, подключенную к выходу выпрямительного блока, отличающийся тем, что фазные конденсаторы подключены последовательно с соответствующими входами выпрямительного блока.

Технология MICOR. Новое поколение источников питания на основе явления резонанса

Метод, использующий широтно-импульсную модуляцию (ШИМ), является ответом на поиски практически совершенного стабилизированного источника питания. Известно, что в импульсном источнике ключ либо включен, либо выключен и управление осуществляется с нулевым рассеянием мощности, в отличие от линейного стабилизатора, где стабилизация происходит из-за рассеяния мощности в проходном элементе. В реальных условиях ШИМ дает разумный подход к переключению без потерь за счет более низкой частоты переключения, например в диапазоне 20–40 кГц. Если посмотреть на ситуацию с другой стороны, можно сказать, почему этот частотный диапазон так долго был популярен.

От самого начала стабилизации с помощью ШИМ конструкторы пытались продвигаться в сторону более высоких частот, поскольку при этом можно уменьшить размеры, вес и стоимость магнитного сердечника и конденсаторов фильтра.

При высокой частоте переключения появляются и другие преимущества. Используя более высокие частоты, можно ожидать уменьшения радиопомех и электромагнитных шумов; меньших проблем при экранировке, развязке, изоляции и ограничении в схеме. Можно также ожидать более быстрого срабатывания, а также снижения выходного сопротивления и величины пульсаций.

Главным препятствием на пути применения более высоких частот были практические трудности создания быстрых и достаточно мощных переключателей. Из-за того что невозможно дости чь мгновенного включения и выключения коммутатора, на нем во время переключения имеется напряжение и одновременно через него протекает ток. Другими словами, трапецеидальные, а не прямоугольные колебания характеризуют процесс переключения. Это, в свою очередь, приводит к потерям переключения, которые сводят на нет теоретически высокий КПД идеального коммутатора, который мгновенно включается, имеет нулевое сопротивление во включенном состоянии и мгновенно выключается. На рис. 1 сравниваются ШИМ и режим переключения в резонансном режиме, который будет рассмотрен подробнее.

Из сказанного выше очевидно, что на идеальном переключателе не должно быть никакого падения напряжения, в то время когда он включен. Все эти рассуждения говорят о том, что высокий КПД был труднодостижимой задачей, особенно при высоких частотах переключения до тех пор, пока не был достигнут прогресс в создании импульсных полупроводниковых приборов.

Следует указать также, что одновременно был необходим прогресс в создании других устройств, таких, как диоды, трансформаторы и конденсаторы.

Надо отдать должное работникам всех областей техники: частота переключения при использовании ШИМ была повышена до 500 кГц. Тем не менее на высоких частотах, скажем на частоте 150 кГц, лучше рассмотреть другой метод. Итак, мы приходим к резонансному режиму работы источника питания.

Стабилизированный источник питания, использующий резонансный режим, действительно представляет собой большой скачок вперед в развитии технологии. Хотя надо сказать, что использование резонансных явлений в инверторах, преобразователях и источниках питания предшествует эре полупроводников. Оказалось, что при использовании резонансных явлений часто удавалось получать хорошие результаты.

Например, в первых телевизорах необходимые высокие напряжения для кинескопа получали с помощью радиочастотного источника питания.

Это был работающий на частоте от 150 до 300 кГц генератор синусоидальных колебаний на электронной лампе, в котором повышение переменного напряжения достигалось в резонансном радиочастотном трансформаторе. По существу, подобные схемы все еще используются для создания напряжений, по крайней мере нескольких сотен тысяч вольт для различных промышленных и научно-исследовательских целей. Более высокие напряжения часто достигаются благодаря совместному применению резонансного режима работы и диодного умножителя напряжения.

Давно известно, что резонансные выходные цепи инвертора стабилизируют работу электродвигателей и сварочного оборудования. Обычно в разрыв провода, ведущего от источника постоянного напряжения к инвертору, включалась катушка с большой индуктивностью. При этом инвертор ведет себя по отношению к нагрузке как источник тока, что дает возможность легче соответствовать условию существования резонансных явлений. В этом случае существующие тиристорные инверторы правильнее назвать квазирезонансными: колебательный контур периодически подвергается ударному возбуждению, но непрерывные колебания отсутствуют. Между импульсами возбуждения колебательный контур отдает запасенную энергию в нагрузку.

Из сказанного выше ясно, что широкое использование резонансного режима работы началось после создания специализированных ИС управления. Эти ИС освободили конструкторов от проблем со сбоями, которые неизбежно сопутствуют стремлению использовать резонансный режим на частотах несколько сот килогерц или несколько мегагерц, где малые размеры компонент могут дать заметное сокращение габаритов, веса и стоимости.

В 2010 году нашими специалистами на резонансной системе работы был создан ряд сварочных машин для ручной дуговой сварки: Handy-190, Handy-200, X-350 Шторм (рис. 2).

В настоящее время на основе такой технологии конструируются машины для полуавтоматической и автоматической сварки (рис. 3).

Такое оборудование имеет ряд технологических преимуществ:

  • почти «идеальная» внешняя вольтамперная характеристика источника питания, более эластичная и мягкая дуга благодаря резонансной структуре управления;
  • уверенное зажигание и комфортная сварка для всех типов электродов;
  • значительно более высокий КПД (более низкое потребление электроэнергии);
  • возможность более точного управления переносом капли за счет мгновенной (1,5 МГц) реакции схемы управления на внешние возмущения (дуги), а как следствие – значительное уменьшение разбрызгивания, стабильное горение сварочной дуги во всех пространственных положениях.

Рис. 1. Осциллограммы, показывающие разницу между ШИМ (слева) и резонансным режимом (справа). При ШИМ потери переключения появляются из-за одновременного протекания тока через коммутатор и наличия напряжения на нем.

Обратите внимание, что эта ситуация отсутствует при резонансном режиме работы, который для стабилизации напряжения использует частотную модуляцию (ЧМ)

Рис. 2. Handy-190 Micor

Рис. 3. Основная схема резонансного преобразователя



Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.