Электронная конфигурация внешней оболочки атома. Неорганическая химия

Электронная конфигурация химических элементов - это отслеживание месторасположения электронов в его атомах. Электроны могут находиться в оболочках, подоболочках и на орбиталях. От распределения электронов зависит валентность элемента, его химическая активность и способность вступать во взаимодействие с другими веществами.

Как записывается электронная конфигурация

Расположение атомов обычно записывается для тех частиц химических элементов, которые находятся в основном состоянии. Если атом возбужден, запись будет называться возбужденной конфигурацией. Определение электронной конфигурации, применимой в том или ином случае, зависит от трех правил, которые справедливы для атомов всех химических элементов.

Принцип заполнения

Электронная конфигурация атома должна соответствовать принципу заполнения, согласно которому электроны атомов заполняют орбитали по возрастающей - от низшего энергетического уровня к высшему. Низшие орбитали любого атома всегда заполняются в первую очередь. Потом электроны заполняют существующие орбитали второго энергетического уровня, затем орбиталь s, а лишь в конце - орбиталь p-подуровня.

На письме электронная конфигурация химических элементов передается формулой, в которой рядом с наименованием элемента указывают комбинацию чисел и литер, соответствующую положению электронов. Верхний показатель обозначает количество электронов на данных орбиталях.

Например, атом водорода обладает единственным электроном. Согласно принципу заполнения, этот электрон находится на s-орбитали. Таким образом, электронная конфигурация водорода будет равна 1s1.

Принцип запрета Паули

Второе правило заполнения орбиталей является частным случаем более обобщенного закона, который открыл швейцарский физик Ф. Паули. Согласно этому правилу, в любом химическом элементе нет пары электронов, имеющих одинаковый набор квантовых чисел. Поэтому на любой орбитали одновременно могу находиться не более двух электронов, и то лишь только в случае, если они имеют неодинаковые спины.

Принцип запрета Паули может быть рассмотрен на конкретном примере. Электронная конфигурация атома бериллия может быть записана, как 1s 2 2s 2 . При попадании в атом кванта энергии атом переходит в возбужденное состояние. Это может быть записано так:

1s 2 2s 2 (обычное состояние) + → 1s 2 2s 1 2p 1 (возбужденное состояние).

Если сравнить электронные конфигурации бериллия в обычном и возбужденном состоянии, можно заметить, что число неспаренных электронов у них неодинаковое. Электронная конфигурация бериллия показывает отсутствие неспаренных электронов в обычном состоянии. После попадания в атом кванта энергии появляются два неспаренных электрона.

В принципе, в любом химическом элементе электроны могут переходить на орбитали с более высокими энергиями, но для химии представляют интерес лишь те переходы, которые осуществляются между подуровнями с близкими значениями энергий.

Объяснить эту закономерность можно следующим образом. Образование химической связи всегда сопровождается выделением энергии, потому что атомы переходят в энергетически выгодное состояние. Распаривание электронов на одном энергетическом уровне несет в себе такие затраты энергии, какие вполне компенсируются после образования химической связи. Энергетические затраты на распаривание электронов разных химических уровней оказываются настолько велики, что химическая связь не в состоянии их компенсировать. Если нет химического партнера, возбужденный атом выделяет квант энергии и возвращается в нормальное состояние - этот процесс ученые называют релаксацией.

Правило Гунда

Электронная конфигурация атома подчиняется закону Гунда, согласно которому заполнение орбиталей одной подоболочки начинается электронами, имеющими одинаковый спин. Лишь после того, как все одиночные электроны займут установленные орбитали, к ним присоединяются заряженные частички с противоположным спином.

Правило Гунда наглядно подтверждает электронная конфигурация азота. Атом азота имеет 7 электронов. Электронная конфигурация этого химического элемента выглядит так: ls22s22p3. Все три электрона, которые располагаются на 2р-подоболочке, должны находиться поодиночке, занимая каждую из трех 2-р орбиталей, и все спины при этом у них должны быть параллельны.

Эти правила помогают не только понять, чем обусловлена электронная конфигурация элементов периодической системы, но и понять процессы, происходящие внутри атомов.

Электронная конфигурация атома - это формула, показывающая расположение электронов в атоме по уровням и подуровням. После изучения статьи Вы узнаете, где и как располагаются электроны, познакомитесь с квантовыми числами и сможете построить электронную конфигурацию атома по его номеру, в конце статьи приведена таблица элементов.

Для чего изучать электронную конфигурацию элементов?

Атомы как конструктор: есть определённое количество деталей, они отличаются друг от друга, но две детали одного типа абсолютно одинаковы. Но этот конструктор куда интереснее, чем пластмассовый и вот почему. Конфигурация меняется в зависимости от того, кто есть рядом. Например, кислород рядом с водородом может превратиться в воду, рядом с натрием в газ, а находясь рядом с железом вовсе превращает его в ржавчину. Что бы ответить на вопрос почему так происходит и предугадать поведение атома рядом с другим необходимо изучить электронную конфигурацию, о чём и пойдёт речь ниже.

Сколько электронов в атоме?

Атом состоит из ядра и вращающихся вокруг него электронов, ядро состоит из протонов и нейтронов. В нейтральном состоянии у каждого атома количество электронов равно количеству протонов в его ядре. Количество протонов обозначили порядковым номером элемента, например, сера, имеет 16 протонов - 16й элемент периодической системы. Золото имеет 79 протонов - 79й элемент таблицы Менделеева. Соответственно, в сере в нейтральном состоянии 16 электронов, а в золоте 79 электронов.

Где искать электрон?

Наблюдая поведение электрона были выведены определённые закономерности, они описываются квантовыми числами, всего их четыре:

  • Главное квантовое число
  • Орбитальное квантовое число
  • Магнитное квантовое число
  • Спиновое квантовое число

Орбиталь

Далее, вместо слова орбита, мы будем использовать термин "орбиталь", орбиталь - это волновая функция электрона, грубо - это область, в которой электрон проводит 90% времени.
N - уровень
L - оболочка
M l - номер орбитали
M s - первый или второй электрон на орбитали

Орбитальное квантовое число l

В результате исследования электронного облака, обнаружили, что в зависимости от уровня энергии, облако принимает четыре основных формы: шар, гантели и другие две, более сложные. В порядке возрастания энергии, эти формы называются s-,p-,d- и f-оболочкой. На каждой из таких оболочек может располагаться 1 (на s), 3 (на p), 5 (на d) и 7 (на f) орбиталей. Орбитальное квантовое число - это оболочка, на которой находятся орбитали. Орбитальное квантовое число для s,p,d и f-орбиталей соответственно принимает значения 0,1,2 или 3.

На s-оболочке одна орбиталь (L=0) - два электрона
На p-оболочке три орбитали (L=1) - шесть электронов
На d-оболочке пять орбиталей (L=2) - десять электронов
На f-оболочке семь орбиталей (L=3) - четырнадцать электронов

Магнитное квантовое число m l

На p-оболочке находится три орбитали, они обозначаются цифрами от -L, до +L, то есть, для p-оболочки (L=1) существуют орбитали "-1", "0" и "1". Магнитное квантовое число обозначается буквой m l .

Внутри оболочки электронам легче располагаться на разных орбиталях, поэтому первые электроны заполняют по одному на каждую орбиталь, а затем уже к каждому присоединяется его пара.

Рассмотрим d-оболочку:
d-оболочке соответствует значение L=2, то есть пять орбиталей (-2,-1,0,1 и 2), первые пять электронов заполняют оболочку принимая значения M l =-2,M l =-1,M l =0, M l =1,M l =2.

Спиновое квантовое число m s

Спин - это направление вращения электрона вокруг своей оси, направлений два, поэтому спиновое квантовое число имеет два значения: +1/2 и -1/2. На одном энергетическом подуровне могут находиться два электрона только с противоположными спинами. Спиновое квантовое число обозначается m s

Главное квантовое число n

Главное квантовое число - это уровень энергии, на данный момент известны семь энергетических уровней, каждый обозначается арабской цифрой: 1,2,3,...7. Количество оболочек на каждом уровне равно номеру уровня: на первом уровне одна оболочка, на втором две и т.д.

Номер электрона


Итак, любой электрон можно описать четырьмя квантовыми числами, комбинация из этих чисел уникальна для каждой позиции электрона, возьмём первый электрон, самый низкий энергетический уровень это N=1, на первом уровне распологается одна оболочка, первая оболочка на любом уровне имеет форму шара (s-оболочка), т.е. L=0, магнитное квантовое число может принять только одно значение, M l =0 и спин будет равен +1/2. Если мы возьмём пятый электрон (в каком бы атоме он не был), то главные квантовые числа для него будут: N=2, L=1, M=-1, спин 1/2.

Задача 1 . Напишите электронные конфигурации следующих элементов: N , Si , F е, Кr , Те, W .

Решение. Энергия атомных орбиталей увеличивается в следующем порядке:

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d .

На каждой s -оболочке (одна орбиталь) может находиться не более двух электронов, на p -оболочке (три орбитали) - не более шести, на d -оболочке (пять орбиталей) - не более 10 и на f -оболочке (семь орбиталей) - не более 14.

В основном состоянии атома электроны занимают орбитали с наименьшей энергией. Число электронов равно заряду ядра (атом в целом нейтрален) и порядковому номеру элемента. Например, в атоме азота - 7 электронов, два из которых находятся на 1s -орбитали, два - на 2s -орбитали, и оставшиеся три электрона - на 2p -орбиталях. Электронная конфигурация атома азота:

7 N : 1s 2 2s 2 2p 3 . Электронные конфигурации остальных элементов:

14 Si: 1s 2 2s 2 2p 6 3s 2 3p 2 ,

26 F е: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6 ,

36 Кr: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 3p 6 ,

52 Те: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 3p 6 5s 2 4d 10 5p 4 ,

74 Те: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 3p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 4 .

Задача 2 . Какой инертный газ и ионы каких элементов имеют одинаковую электронную конфигурацию с частицей, возникающей в результате удаления из атома кальция всех валентных электронов?

Решение. Электронная оболочка атома кальция имеет струк­туру 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 . При удалении двух валентных электронов образуется ион Са 2+ с конфигурацией 1s 2 2s 2 2р 6 Зs 2 Зр 6 . Такую же электронную конфигурацию имеют атом Ar и ионы S 2- , Сl — , К + , Sc 3+ и др.

Задача 3 . Могут ли электроны иона Аl 3+ находиться на следующих орбиталях: а) 2р; б) 1р; в) 3d ?

Решение. Электронная конфигурация атома алюминия: 1s 2 2s 2 2p 6 3s 2 3p 1 . Ион Al 3+ образуется при удалении трех валентных электронов из атома алюминия и имеет электронную конфи­гурацию 1s 2 2s 2 2p 6 .

а) на 2р-орбитали электроны уже находятся;

б) в соответствии с ограничениями, накладываемыми на квантовое число l (l = 0, 1,…n -1), при n = 1 возможно только значение l = 0, следовательно, 1p -орбиталь не существует;

в) на Зd -орбитали электроны могут находиться, если ион - в возбужденном состоянии.

Задача 4. Напишите электронную конфигурацию атома неона в первом возбужденном состоянии.

Решение. Электронная конфигурация атома неона в основном состоянии – 1s 2 2s 2 2p 6 . Первое возбужденное состояние получается при переходе одного электрона с высшей занятой орбитам (2р) на низшую свободную орбиталь (3s ). Электронная конфигурация атома неона в первом возбужденном состоянии – 1s 2 2s 2 2p 5 3s 1 .

Задача 5 . Каков состав ядер изотопов 12 C и 13 C , 14 N и 15 N ?

Решение. Число протонов в ядре равно порядковому номеру элемента и одинаково для всех изотопов данного элемента. Число нейтронов равно массовому числу (указываемому слева вверху от номера элемента) за вычетом числа протонов. Разные изотопы одного и того же элемента имеют разные числа нейтронов.

Состав указанных ядер:

12 С: 6р + 6n ; 13 С: 6р + 7n ; 14 N : 7p + 7n ; 15 N : 7p + 8n .

Электронные конфигурации атомов

Электроны в атоме занимают уровни, подуровни и орбитали согласно следующим правилам.

Правило Паули . В одном атоме два электрона не могут иметь четыре одинаковых квантовых числа. Они должны отличаться, по меньшей мере, одним квантовым числом.

Орбиталь содержит электроны с определенными числами n, l, m l и электроны на ней могут отличаться только квантовым числом m s , имеющим два значения +1/2 и -1/2. Поэтому на орбитали могут располагаться не более двух электронов.

На подуровне электроны имеют определенные n и l и различаются числами m l и m s . Поскольку m l может принимать 2l+1 значение, а m s - 2 значения, то на подуровне может содержаться не более 2(2l+1) электронов. Отсюда максимальные числа электронов на s-, p-, d-, f-подуровнях равны соответственно 2, 6, 10, 14 электронов.

Аналогично на уровне содержится не более 2n 2 электронов и максимальное число электронов на четырех первых уровнях не должно превышать 2, 8, 18 и 32 электронов соответственно.

Правило наименьшей энергии. Последовательное заполнение уровней должно происходить так, чтобы обеспечить минимальную энергию атома. Каждый электрон занимает свободную орбиталь с наименьшей энергией.

Правило Клечковского . Заполнение электронных подуровней осуществляется в порядке возрастания суммы (n+l), а в случае одинаковой суммы (n+l) - в порядке возрастания числа n.

Графическая форма правила Клечковского.

Cогласно правилу Клечковского заполнение подуровней осуществляется в следующем порядке: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s,...

Хотя заполнение подуровней происходит по правилу Клечковского, в электронной формуле подуровни записываются последовательно по уровням: 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f и т.д. Это связано с тем, что энергия заполненных уровней определяется квантовым числом n: чем больше n, тем больше энергия и для полностью заполненных уровней мы имеем Е 3d

Уменьшение энергии подуровней с меньшими n и большими l в случае, если они заполнены полностью или наполовину, приводит для ряда атомов к электронным конфигурациям, отличающимся от предсказанных по правилу Клечковского. Так для Cr и Cu мы имеем на валентном уровне распределение:

Cr(24e) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 и Cu(29e) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 , а не

Cr(24e) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 4 4s 2 и Cu(29e) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 9 4s 2 .

Правило Гунда . Заполнение орбиталей данного подуровня осуществляется так, чтобы суммарный спин был максимален. Орбитали данного подуровня заполняются сначала по одному электрону. Например, для конфигурации р 2 заполнение p x 1 p y 1 с суммарным спином s = 1/2 + 1/2 = 1 предпочтительнее (т.е. ему соответствует меньшая энергия), чем заполнение p x 2 с суммарным спином s = 1/2 - 1/2 = 0.

­ ­ - более выгодно, ­ ¯ - менее выгодно.

Электронные конфигурации атомов можно записать по уровням, подуровням, орбиталям. В последнем случае орбиталь обычно обозначают квантовой ячейкой, а электроны - стрелками, имеющими то или иное направление в зависимости от величины m s .

Например, электронная формула Р(15е) может быть записана:

а) по уровням)2)8)5

б) по подуровням 1s 2 2s 2 2p 6 3s 2 3p 3

в) по орбиталям 1s 2 2s 2 2p x 2 2p y 2 2p z 2 3s 2 3p x 1 3p y 1 3p z 1 или

­ ¯ ­ ¯ ­ ¯ ­ ¯ ­ ¯ ­ ¯ ­ ­ ­

Пример. Записать электронные формулы Ti(22e) и As(33e) по подуровням. Титан находится в 4 периоде, поэтому записываем подуровни до 4р: 1s2s2p3s3p3d4s4p и заполняем их электронами до их общего числа 22, при этом незаполненные подуровни в окончательную формулу не включаем. Получаем.

Электронная конфигурация элемента это запись распределения электронов в его атомах по оболочкам, подоболочкам и орбиталям. Электронная конфигурация обычно записывается для атомов в их основном состоянии. Электронная конфигурация атома, у которого один или несколько электронов находятся в возбужденном состоянии, называется возбужденной конфигурацией. Для определения конкретной электронной конфигурации элемента в основном состоянии существуют следующие три правила: Правило 1: принцип заполнения. Согласно принципу заполнения, электроны в основном состоянии атома заполняют орбитали в последовательности повышения орбитальных энергетических уровней. Низшие по энергии орбитали всегда заполняются первыми.

Водород; атомный номер = 1; число электронов = 1

Этот единственный в атоме водорода электрон должен занимать s-орбиталь К-обо-лочки, поскольку из всех возможных орбиталей она имеет самую низкую энергию (см. рис. 1.21). Электрон на этой s-орбитали называется ls-электрон. Водород в основном состоянии имеет электронную конфигурацию Is1.

Правило 2: принцип запрета Паули . Согласно этому принципу, на любой орбитали может находиться не более двух электронов и то лишь в том случае, если они имеют противоположные спины (неодинаковые спиновые числа).

Литий; атомный номер = 3; число электронов = 3

Орбиталь с самой низкой энергией-это 1s-орбиталъ. Она может принять на себя только два электрона. У этих электронов должны быть неодинаковые спины. Если обозначать спин +1/2 стрелкой, направленной вверх, а спин -1/2 стрелкой, направленной вниз, то два электрона с противоположными (антипараллельными) спинами на одной орбитали схематически можно представить записью (рис. 1.27)

На одной орбитали не могут находиться два электрона с одинаковыми (параллельными) спинами:

Третий электрон в атоме лития должен занимать орбиталь, следующую по энергии за самой низкой орбиталью, т.е. 2в-орбиталь. Таким образом, литий имеет электронную конфигурацию Is22s1.

Правило 3: правило Гунда . Согласно этому правилу, заполнение орбиталей одной подоболочки начинается одиночными электронами с параллельными (одинаковыми по знаку) спинами, и лишь после того, как одиночные электроны займут все орбитали, может происходить окончательное заполнение орбиталей парами электронов с противоположными спинами.

Азот; атомный номер = 7; число электронов = 7 Азот имеет электронную конфигурацию ls22s22p3. Три электрона, находящиеся на 2р-подоболочке, должны располагаться поодиночке на каждой из трех 2р-орбиталей. При этом все три электрона должны иметь параллельные спины (рис. 1.22).

В табл. 1.6 показаны электронные конфигурации элементов с атомными номерами от 1 до 20.

Таблица 1.6. Электронные конфигурации основного состояния для элементов с атомным номером от 1 до 20



Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.