Биогеохимические циклы (биогеохимические круговороты) -циклические процессы обмена веществ между различными компонентами биосферы, обусловленные жизнедеятельностью организмов. Особенности кругооборота воды и некоторых веществ в биосфере Биогеохимические ц

Циркуляция химических элементов (веществ) в биосфере называется биогеохимическими циклами .Обмен химических элементов между живыми организмами и неорганической средой называют биогеохимическим круговоротом , или биогеохимическим циклом . Живые организмы играют в этих процессах решающую роль. Необходимые для жизни элементы условно называют биогенными (дающими жизнь) элементами, или питательными веществами . Различают две группы питательных веществ:

  • К макротрофным веществам относятся элементы, которые составляют химическую основу тканей живых организмов. Это углерод, водород, кислород, азот, фосфор, калий, кальций, магний, сера .
  • Микротрофные вещества включают в себя элементы и их соединения, также необходимые для существования живых систем, но в исключительно малых количествах. Такие вещества часто называют микроэлементами. Это железо, марганец, медь, цинк, бор, натрий, молибден, хлор, ванадий и кобальт . Недостаток микроэлементов может оказывать сильное влияние на живые организмы (в частности, ограничивать рост растений), так же как и нехватка биогенных элементов.

Биогеохимический цикл углерода

Биогенные элементы благодаря участию в круговороте могут использоваться неоднократно. Запасы биогенных элементов непостоянны: некоторая их часть связана и входит в состав живой биомассы, что снижает количество, остающееся в среде экосистемы. И если бы растения и другие организмы в конечном счете не разлагались, запас питательных веществ исчерпался бы и жизнь на Земле прекратилась. Отсюда можно сделать вывод, что активность гетеротрофных организмов, в первую очередь редуцентов, - решающий фактор поддержания круговорота биогенных элементов и сохранения жизни.

Глобальный круговорот углерода. Цифры - миллионы миллиардов грамм (10 15 г); для фондов - в среднем, для потоков - в год

Рассмотрение характеристик БГХ-циклов нескольких важнейших элементов следует начать, естественно, с углерода. Углерод является основой органических соединений, и поэтому цикл углерода имеет особое значение для живых организмов. Важнейшей особенностью этого цикла является наличие запасов CO 2 , углекислого газа, в атмосфере, откуда его могут черпать живые организмы. Перемещение углерода через живые организмы тесно связано с перемещением иных биогенов. Например, соотношение потоков углерода и азота через живое вещество составляет примерно 6:1 (шесть атомов углерода на один атом азота), а соотношение потоков углерода и фосфора - примерно 100:1. Естественно, это отражает соотношения самих элементов в составе живого вещества.

Промышленные выбросы угарного газа (CO) в атмосферу равны его естественному поступлению или даже превышают его.

Особое значение цикла углерода связано с его влиянием на климат. Углекислый газ и метан являются важнейшими парниковыми газами. CH 4 стабилизирует озоновый слой, является важным парниковым газом. Метан выделяется болотами и мелководьями, а также кишечными эндосимбионтами жвачных. Сейчас разрабатываются методы борьбы с ними с использованием антибиотиков. Результат такой борьбы - увеличение прироста живой массы и снижение парникового эффекта в атмосфере (т.е., в некоторой степени - торможение глобального потепления).

Биогеохимический цикл азота

Циркуляция биогенных элементов обычно сопровождается их химическими превращениями. Нитратный азот, например, может превращаться в белковый, затем переходить в мочевину, превращаться в аммиак и вновь синтезироваться в нитратную форму под влиянием микроорганизмов. В биохимическом цикле азота действуют различные механизмы, как биологические, так и химические. Схема циркуляции азота в биосфере представлена на рисунке.

Биогеохимический цикл фосфора

Одним из наиболее простых циклов является цикл фосфора. Основные запасы фосфора содержат различные горные породы, которые постепенно (в результате разрушения и эрозии) отдают свои фосфаты наземным экосистемам. Фосфаты потребляют растения и используют их для синтеза органических веществ. При разложении трупов животных микроорганизмами фосфаты возвращаются в почву и затем снова используются растениями. Помимо этого часть фосфатов выносится с током воды в море. Это обеспечивает развитие фитопланктона и всех пищевых цепей с участием фосфора. Часть фосфора, содержащаяся в морской воде, может вновь вернуться на сушу в виде гуано - экскрементов морских птиц. Там, где они образуют большие колонии, гуано добывают как очень ценное удобрение.

Некоторые организмы могут играть исключительно важную роль в круговороте фосфора. Моллюски, например, фильтруя воду и извлекая оттуда мелкие организмы, их остатки, захватывают и удерживают большое количество фосфора. Несмотря на то что роль моллюсков в пищевых цепях прибрежных морских сообществ невелика (они не образуют плотных скоплений с высокой биомассой, их пищевая ценность невысока), эти организмы имеют первостепенное значение как фактор, позволяющий сохранить плодородие той зоны моря, где они обитают. Популяции моллюсков подобны природным аккумуляторам, только вместо электроэнергии они накапливают и удерживают фосфор, необходимый для поддержания жизни в прибрежных зонах морей. Иначе говоря, популяция этих организмов более важна для экосистемы как “посредник” в обмене веществом между живой и неживой природой (сообществом и биотопом).
Этот пример - хорошая иллюстрация того, что ценность вида в природе не всегда зависит от таких показателей, как его обилие или сырьевые качества. Эта ценность может проявляться лишь косвенно и не всегда обнаруживается при поверхностном исследовании.

Азот составляет почти 78% массы атмосферы. Основная его часть образует молекулы N 2 из двух атомов Большинство организмов не способно использовать этот азот из-за прочной связи атомов. Для них необходим азот в таких химических формах, как аммиак, ионы аммония, нитрат- и нитрит-ионы, которые участвуют в химических реакциях с кислородом. Поэтому для данного биогеохимического цикла важен связанный азот.

Природный биогеохимический цикл азота показан на рис.16. Суммарный поток азота в биосферу составляет порядка 14·10 10 т/г. Главный поставщик связанного азота – азотфиксирующие бактерии. Наиболее известные из них находятся в клубеньках бобовых растений. На их деятельности основан традиционный метод повышения плодородия. На поле выращивают бобовые культуры, потом их запахивают, накопленный в клубеньках азот переходит почву. На следующий год поле засевают другими культурами, которые используют этот азот. Некоторое количество азота связываться во время грозы. Электрический разряд нагревает воздух до температуры, при которой образуются различные оксиды азота. Как и в случае с углеродом, определенное количество соединений азота поступает из недр Земли.

Обратный процесс – восстановление нитрат-ионов выполняет цепочка бактерий:

· аммонифицирующие бактерии разлагают азотистые органические соединения, образуя аммиак (NH 3) или ионы аммония (NH 4 +);

· бактерии нитрификаторы окисляют аммиак в азотистую кислоту – NO 2 – . (нитриты);

· нитратные бактерии переводят азотистую кислоту в азотную кислоту – NO 3 – (нитраты) и цикл начинается снова.

Рис. 15. Биогеохимический круговорот азота

Антропогенный поток азота в биосферу примерно равен природному. Наибольший вклад дает применение азотных удобрений (8·10 10 т/г). Последствием может быть увеличению содержания в продуктах нитритов, нитратов и нитрозаминов с широким спектром токсического действия.

Источником оксидов азота (2·10 10 т/г) являются многие металлургические процессы, транспорт и сжигание топлива при производстве тепла и электроэнергии. Оксиды азота участвуют в образовании кислотных дождей и фотохимического смога.

Экосистемы усваивают определенное количество азота. Его избыток вымывается и накапливается в водоемах. Процесс увеличения в воде биогенных элементов (не только соединений азота) называется эвтрофикацией. Ее основные причины – сброс в водоемы промышленных и коммунальных сточных вод, химизация сельского хозяйства и концентрация животноводства. В настоящее время это явление охватило 90% всех озер мира. Процесс вызывает подчас необратимые нарушения водных экосистем и ухудшает качество вод (см. раздел 6.2.3.). Основные меры снижения эвтрофикации: очистка стоков и контроль за использование удобрений.

Газообразный азот (N2) в атмосфере крайне инертен, иными словами, необходимо очень большое количество энергии, чтобы связи в молекуле азота (N 2) разорвались и образовались другие соединения, например оксиды. Однако азот является важнейшим компонентом биологических молекул, таких как белки, нуклеиновые кислоты и т. д. Переводить атмосферный азот в доступную для организмов форму (нитриты и нитраты) способны лишь некоторые бактерии. Этот процесс называется азотфиксацией и представляет собой основной путь поступления азота в биотический компонент экосистемы.

Азотфиксация

Азотфиксация - энергоемкий процесс, поскольку требует разрушения очень прочной связи между двумя атомами азота в его молекуле. Бактерии используют для этого фермент нитрогеназу и энергию, заключенную в АТФ. Неферментативная азотфиксация требует гораздо больше энергии, получаемой в промышленности за счет сгорания ископаемого топлива, а в атмосфере в результате действия ионизирующих факторов, например молний и космического излучения.

Азот так важен для плодородия почвы, и потребность в нем сельского хозяйства так велика, что ежегодно на химических заводах производятся колоссальные количества аммиака, который применяется в составе азотных удобрений, таких как нитрат аммония (NH4NO3) или мочевина .

Сейчас масштабы промышленной азотфиксации сравнимы с природными, но мы до сих пор плохо представляем возможные последствия постепенного накопления в биосфере доступных организмам соединений азота. Компенсационных механизмов, возвращающих связываемый нами азот в атмосферный пул, не существует.

Круговорот азота. Азот составляет 79% объема атмосферы - главного резервуара этого элемента.

Относительно небольшое количество фиксированного азота (5-10%) дает ионизация в атмосфере. Образующиеся оксиды азота, взаимодействуя с дождевой водой, дают соответствующие кислоты, которые, попав в почву, в конечном итоге превращаются в нитраты.

Вероятно, главный природный источник фиксированного азота - представители семейства бобовых, например клевер, соя, люцерна, горох. На корнях бобовых имеются характерные утолщения, называемые клубеньками, в которых внутриклеточно живут азотфиксирующие бактерии рода Rhizobium. Этот симбиоз мутуалистичен, поскольку растение получает от бактерий фиксированный азот в форме аммиака, а взамен снабжает их энергией и некоторыми органическими веществами, например углеводами. В пересчете на единицу площади клубеньковые бактерии могут дать в 100 раз больше фиксированного азота, чем свободноживущие. Неудивительно, что бобовые растения часто высевают для обогащения почвы этим элементом, получая заодно и урожай высококачественных кормовых трав.

Все азотфиксаторы связывают азот в форме аммиака, но он сразу же используется для синтеза органических соединений, в первую очередь белков.

Разложение и денитрификация

Большинство растений в качестве источника азота используют нитратионы. Животные в свою очередь прямо или косвенно получают усвояемый азот из растений. На рис. 10.11 показано, как образуются нитраты после разложения белка мертвых тканей сапротрофными бактериями и грибами. Этот процесс включает окислительные реакции с участием кислорода и аэробных бактерий. Белки сначала расщепляются до аминокислот, а затем аминокислоты дают аммиак. Этот же продукт образуется при разложении экскретов и фекалий животных. Хемосинтезирующие бактерии Nitrosomonas и Nitrobacter осуществляют так называемую нитрификацию - поэтапно окисляют аммиак до нитратов.

Денитрификация

В некотором смысле процессом, обратным нитрификации , является денитрификация, также осуществляемая бактериями, которые в результате понижают плодородие почвы. Денитрификация происходит в анаэробных условиях, когда нитраты используются при дыхании вместо кислорода в качестве окислителя органических соединений (акцептора электронов). Сами нитраты при этом восстанавливаются, обычно до азота. Следовательно, денитрифицирующие бактерии относятся к факультативным аэробам.

Фиксация атмосферного азота в природе происходит по двум основным направлениям - абиогенному и биогенному. Первый путь включает главным образом реакции азота с кислородом. Так как азот химически весьма инертен, для окисления требуются большие количества энергии (высокие температуры). Эти условия достигаются при разрядах молний, когда температура достигает 25000 °C и более. При этом происходит образование различных оксидов азота. Существует также вероятность, что абиотическая фиксация происходит в результате фотокаталитических реакций на поверхности полупроводников или широкополосных диэлектриков (песок пустынь).

Однако основная часть молекулярного азота (около 1,4×10 8 т/год) фиксируется биотическим путём. Долгое время считалось, что связывать молекулярный азот могут только небольшое количество видов микроорганизмов (хотя и широко распространённых на поверхности Земли): бактерии Azotobacter и Clostridium , клубеньковые бактерии бобовых растений Rhizobium , цианобактерииAnabaena , Nostoc и др. Сейчас известно, что этой способностью обладают многие другие организмы в воде и почве, например, актиномицеты в клубнях ольхи и других деревьев (всего 160 видов). Все они превращают молекулярный азот в соединения аммония (NH 4 +). Этот процесс требует значительных затрат энергии (для фиксации 1 г атмосферного азота бактерии в клубеньках бобовых расходуют порядка 167,5 кДж, то есть окисляют примерно 10 г глюкозы). Таким образом, видна взаимная польза от симбиоза растений и азотфиксирующих бактерий - первые предоставляют вторым «место для проживания» и снабжают полученным в результате фотосинтеза «топливом» - глюкозой, вторые обеспечивают необходимый растениям азот в усваиваемой ими форме.

Азот в форме аммиака и соединений аммония, получающийся в процессах биогенной азотфиксации, быстро окисляется до нитратов и нитритов (этот процесс носит название нитрификации). Последние, не связанные тканями растений (и далее по пищевой цепи травоядными и хищниками), недолго остаются в почве. Большинство нитратов и нитритов хорошо растворимы, поэтому они смываются водой и в конце концов попадают в мировой океан (этот поток оценивается в 2,5-8×10 7 т/год).

Азот, включённый в ткани растений и животных, после их гибели подвергается аммонификации (разложению содержащих азот сложных соединений с выделением аммиака и ионов аммония) и денитрификации то есть выделению атомарного азота, а также его оксидов. Эти процессы целиком происходят благодаря деятельности микроорганизмов в аэробных и анаэробных условиях.

В отсутствие деятельности человека процессы связывания азота и нитрификации практически полностью уравновешены противоположными реакциями денитрификации. Часть азота поступает в атмосферу из мантии с извержениями вулканов, часть прочно фиксируется в почвах и глинистых минералах, кроме того, постоянно идёт утечка азота из верхних слоёв атмосферы в межпланетное пространство.

ХОЖДЕНИЕ В ПРИРОДЕ

Азот вслед за водородом, гелием и кислородом является четвертым по распространенности элементом Солнечной системы. Азот обнаружен в спектрах звезд, в том числе в фотосфере Солнца, в метеоритах, кометах, солнечном ветре и в межзвездных облаках газа. Молекулярный азот наблюдается в атмосферах Венеры и Марса, а аммиак характерен для Юпитера и Сатурна. Во всех космических объектах азот встречается только в восстановленном состоянии.

В земной коре по распространенности азот занимает 20-е место. Подавляющая его часть сосредоточена в следующих основных резервуарах: атмосфере (3,86-Ю15 т), литосфере (1,7 1015 т), гидросфере (2,2 -1013 т) и биосфере (~ 10"" т). В атмосфере свободный азот в виде молекулярного Na составляет 78,09% по объему (или 75,6% по массе), не считая незначительных примесей его в виде аммиака и окислов.

В литосфере среднее содержание азота составляет 6-10~3 вес.%. Основная масса азота в силикатах находится в химически связанном состоянии в виде NHJ, изоморфно замещающего ион калия в силикатной решетке. Кроме того, в природе встречаются и азотные минералы: нашатырь (NH4C1), выделяющийся из вулканов в довольно больших количествах, баддингтовят (NH4AlSi308- 0,5 Н2О) - единственный найденный аммониевый алюмосиликат с пеолитной водой. В самых приповерхностных областях литосферы обнаружен ряд минералов, состоящих в основном из нитратных солей. Среди них широкоизвестная селитра (NaN03), крупные скопления которой характерны для сухого пустынного климата (Чили, Средняя Азия). Долгое время селитра была главным источником связанного азота. (Сейчас основное значение имеет промышленный синтез аммиака из азота воздуха и водорода.) В природе обнаружены и нитриды: сильвестрин (Fe6N2) в лавах Везувия и осборнит (TiN), синоит (Si2N20), карлсбергит (CrN) в метеоритах.

По сравнению с силикатными минералами ископаемое органическое вещество существенно обогащено азотом. Нефть содержит от 0,01 до 2% азота, а каменный уголь - от 0,2 до 3%. Как правило, повышенное содержание азота имеют алмазы (до 0,2%).

В гидросфере среднее содержание азота составляет 1,6- Ю-3 вес.%. Основную часть этого азота составляет молекулярный азот, растворенный в воде; химически связанный азот, которого примерно в 25 раз меньше, представлен нитратной и органической формами. В меньших количествах в воде содержится аммиачный и нитритный азот. Концентрация связанного азота в океане примерно в 10* раз меньше, чем в почвах, пригодных для сельскохозяйственного производства. Это ставит под сомнение оптимистические высказывания по поводу безграничных резервов Мирового океана.

Хотя название азота означает «не поддерживающий жизни», на самом деле это необходимый для жизнедеятельности элемент. В растительных организмах его содержится в среднем 3%, в живых организмах до 10% от сухого веса. Азот накапливается в почвах (в среднем 0,2 вес.%). В белке животных и человека среднее содержание азота составляет 16%. Человек и животные не могут синтезировать 8 незаменимых аминокислот (валин, изолейцин, лейцин, фенилаланин, триптофан, метионин, треонин, лизин), и поэтому для них основным источником этих аминокислот являются белки растений и микроорганизмов.

Тема 3.5. БИОГЕОХИМИЧЕСКИЕ ЦИКЛЫ ВАЖНЕЙШИХ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ:
УГЛЕРОДА, КИСЛОРОДА, АЗОТА, СЕРЫ, ФОСФОРА, КАЛИЯ, КАЛЬЦИЯ,
КРЕМНЕЗЕМА, АЛЮМИНИЯ, ЖЕЛЕЗА, МАРГАНЦА И ТЯЖЕЛЫХ МЕТАЛЛОВ

Давайте хотя бы в общих чертах познакомимся с биогеохимическими циклами таких важных для биосферы элементов как углерод, кислород, азот, сера, фосфор, калий, кальций, а также весьма распространенных в природе элементов, таких как кремний, алюминий и железо.

Биогеохимический цикл углерода.

Содержание углерода в атмосфере Земли составляет 0,046% в форме двуокиси углерода и 0,00012% в форме метана. Среднее его содержание в земной коре – 0,35%, а в живом веществе – около 18% (Виноградов, 1964). С углеродом тесно связан весь процесс возникновения и развития биосферы, т.к. именно углерод является основой белковой жизни на нашей планете, т.е. углерод является важнейшим химическим компонентом живого вещества. Именно этот химический элемент, благодаря своей способности образовывать прочные связи между своими атомами, является основой всех органических соединений.

Индекс биогенного обогащения почв по отношению к земной коре, а растений по отношению к почвам составляет для углерода 100 и 1000 соответственно (Ковда, 1985).

Основным резервуаром углерода в биосфере, из которого этот элемент заимствуется живыми организмами для синтеза органического вещества, является атмосфера. Углерод содержится в ней, главным образом, в форме диоксида СО 2 . Небольшая доля атмосферного углерода входит в состав других газов – СО и различных углеводородов, в основном метана СН 4 . Но они в кислородной атмосфере неустойчивы, и вступают в химические взаимодействия с образованием, в конечном счёте, того же СО 2 .

Из атмосферы углерод усваивается автотрофными организмами-продуцентами (растениями, бактериями, цианобионтами) в процессе фотосинтеза, в результате которого, на основе взаимодействия с водой, формируются органические соединения – углеводы. Далее, в результате процессов метаболизма, с участием веществ, поступающих с водными растворами, в организмах синтезируются и более сложные органические вещества. Они не только используются для формирования растительных тканей, но также служат источником питания для организмов, занимающих очередные звенья трофической пирамиды – консументов. Таким образом, по трофическим цепям, углерод переходит в организмы различных животных.

Возвращение углерода в окружающую среду происходит двумя путями. Во-первых – в процессе дыхания. Суть процессов дыхания заключается в использовании организмами окислительных химических реакций, дающих энергию для физиологических процессов. Окисление органических соединений, для которого используется атмосферный или растворённый в воде кислород, имеет результатом разложение сложных органических соединений с образованием СО 2 и Н 2 О. В итоге углерод в составе СО 2 возвращается в атмосферу, и одна ветвь круговорота замыкается.

Второй путь возвращения углерода – разложение органического вещества. В условиях биосферы процесс этот в основном протекает в кислородной среде, и конечными продуктами разложения являются те же СО 2 и Н 2 О. Но большая часть углекислого газа при этом не поступает прямо в атмосферу. Углерод, высвобождающийся при разложении органического вещества, в основном остаётся в растворённой форме в почвенных, грунтовых и поверхностных водах. Или в виде растворённого углекислого газа, или же в составе растворённых карбонатных соединений – в форме ионов НСО 3 - или СО 3 2- . Он может после более или менее продолжительной миграции частично возвращаться в атмосферу, но большая или меньшая его доля всегда осаждается в виде карбонатных солей и связывается в составе литосферы.

Часть атмосферного углерода непосредственно поступает из атмосферы в гидросферу, растворяясь в воде. Главным образом, углекислый газ поглощается из атмосферы, растворяясь в водах Мирового Океана. Сюда же поступает и часть углерода, в тех или иных формах растворённого в водах суши. СО 2 , растворённый в морской воде, используется морскими организмами на создание карбонатного скелета (раковины, коралловые постройки, панцири иглокожих и т.д.). Он входит в состав пластов карбонатных пород биогенного происхождения, и на более или менее продолжительное время «выпадает» из биосферного круговорота.

В бескислородных средах разложение органического вещества также идёт с формированием в качестве конечного продукта углекислого газа. Здесь окисление протекает за счёт кислорода, заимствуемого из минеральных веществ бактериями-хемосинтетиками. Но процесс в этих условиях идёт медленнее, и разложение органического вещества обычно является неполным. В результате существенная часть углерода остаётся в составе не до конца разложившегося органического вещества и накапливается в толще земной коры в битуминозных илах, торфяниках, углях.

Хранители углерода – это живая биомасса, гумус, известняки и каустобиолиты. Естественными источниками углекислого газа, кроме вулканических эксгаляций, являются процессы разложения органичесекого вещества, дыхание животных и растений, окисление органических веществ в почве и других природных средах. Техногенная углекислота составляет 20х10 9 т, что пока намного меньше, чем естественное ее поступление в атмосферу. За миллиарды лет с момента появления жизни на Земле весь углерод атмосферы и гидросферы неоднократно прошел через живые организмы. В течение всего 304 лет живые организмы усваивают столько углерода, сколько его содержится в атмосфере. Следовательно, всего за 4 года может полностью обновиться углеродный состав атмосферы, и условно можно считать, что углерод атмосферы за этот срок завершает свой цикл. Цикл углерода, входящего в состав гумуса почв оценивается в 300-400 лет.

Роль углерода в биосфере наглядно иллюстрируется схемой его круговорота (рис. 3.5.1).

Рис. 3.5.1. Схема биогеохимического цикла углерода

Из этой схемы наглядно видно, что растения, используя механизм фотосинтеза, выполняют функцию продуцентов кислорода и являются основными потребителями углекислого газа.

Однако, цикл биологического круговорота углерода не замкнут. Что очень важно, в том числе, и для нас. Этот элемент нередко выводится из геохимического круговорота на длительный срок в виде карбонатных пород, торфов, сапропелей, углей, гумуса. Таким образом, часть углерода всё время выпадает из биологического круговорота, связываясь в литосфере в составе различных горных пород. Почему же тогда не возникает дефицита углерода в атмосфере? Причина в том, что его потеря компенсируется постоянным поступлением СО 2 в атмосферу в результате вулканической деятельности. То есть, в атмосферу постоянно поступают глубинные углекислый газ и окись углерода. Это позволяет поддерживать баланс углерода в биосфере нашей планеты.

Хозяйственная деятельность человека интенсифицирует биологический круговорот углерода и может способствовать повышению первичной, а, следовательно, и вторичной продуктивности. Но дальнейшая интенсификация техногенных процессов и может сопровождаться повышением концентрации двуокиси углерода в атмосфере. Повышение концентрации углекислоты до 0,07% резко ухудшает условия дыхания человека и животных. Расчеты показывают, что при условии сохранения современного уровня добычи и использования горючих ископаемых потребуется чуть больше 200 лет для достижения такой концентрации углекислого газа в атмосфере Земли. В отдельных крупных городах эта угроза вполне реальна уже сейчас.

Биогеохимический цикл кислорода

Как Вы помните, кислород – самый распространенный элемент не только земной коры (его кларк 47), но и гидросферы (85,7%), а также живого вещества (70%). Существенную роль этот элемент играет и в составе атмосферы (более 20%). Благодаря исключительно высокой химической активности, кислород играет особо важную роль в биосфере. Он определяет окислительно-восстановительные и щелочно-кислотные условия растворов и расплавов. Для него характерна как ионная, так и неионная форма миграции в растворах.

Эволюция геохимических процессов на Земле сопровождается неуклонным увеличением содержания кислорода. В настоящее время количество кислорода в атмосфере составляет 1,2х10 15 тонн. Масштабы продуцирования кислорода зелеными растениями таковы, что это количество могло быть удвоено за 4000 лет. Но этого не происходит, так как в течение года разлагается примерно такое же количество органического вещества, которое образуется в результате фотосинтеза. При этом поглощается почти весь выделившийся кислород. Но благодаря незамкнутости биогеохимического круговорота в связи с тем, что часть органического вещества сохраняется и свободный кислород постепенно накапливается в атмосфере.

Главная «фабрика» по производству кислорода на нашей планете – зеленые растения, хотя в земной коре также протекают разнообразные химические реакциив результате которых выделяется свободный кислород.

Еще один миграционный цикл свободного кислорода связан с массобменом в системе природные воды – тропосфера. В воде океана находится от 3х10 9 до 10х10 9 м 3 растворенного кислорода. Холодная вода высоких широт поглощает кислород, а, поступая с океаническими течениями в тропики – выделяет его в атмосферу. Поглощение и выделение кислорода происходит и при смене сезонов года, сопровождающихся изменением температуры воды.

Кислород расходуется в громадном количестве окислительных реакций, большинство из которых имеет биохимическую природу. В этих реакциях высвобождается энергия, поглощенная в ходе фотосинтеза. В почвах, илах, водоносных горизонтах развиваются микроорганизмы, использующие кислород для окисления органических соединений. Запасы кислорода на нашей планете огромны. Он входит в состав кристаллических решеток минералов и высвобождается из них живым веществом.

Таким образом, общая схема круговорота кислорода в биосфере складывается из двух ветвей:

  • образование свободного кислорода при фотосинтезе;
  • поглощение кислорода в окислительных реакциях

Согласно расчетам Дж. Уолкера (1980) выделение кислорода растительностью мировой суши составляет 150х10 15 тонн в год; выделение фотосинтезирующими организмами океана – 120х10 15 тонн в год; поглощение в процессах аэробного дыхания – 2 10 х10 15 тонн в год; биологическая нитрификация и другие процессы разложения органического вещества – 70х10 15 тонн в год.

В биогеохимическом круговороте можно выделить потоки кислорода между отдельными компонентами биосферы (рис. 3.5.2).

Рис. 3.5.2. Схема биогеохимического цикла кислорода

В современных условиях установившиеся в биосфере потоки кислорода нарушаются техногенными миграциями. Многие химические соединения, сбрасываемые промышленными предприятиями в природные воды, связывают растворенный в воде кислород. В атмосферу выбрасывается все большее количество углекислого газа и различных аэрозолей. Загрязнение почв и, особенно, вырубка лесов, а также опустынивание земель на огромных территориях уменьшают производство кислорода растениями суши. Огромное количество атмосферного кислорода расходуется при сжигании топлива. В некоторых промышленно развитых странах кислорода сжигают больше, чем образуется его за счет фотосинтеза.

Биогеохимический цикл водорода

В земной коре свободный водород неустойчив. Он быстро соединяется с кислородом, образуя воду, а также участвует в других реакциях. Кроме того, в связи со своей ничтожно малой атомной массой он способен улетучиваться в космос (диссипировать). Значительное количество водорода поступает на поверхность Земли при вулканических извержениях. Постоянно образуется газообразный водород и в результате некоторых химических реакций, а также в процессе жизнедеятельности бактерий, разлагающих органическое вещество в анаэробных условиях.

Организмы закрепляют водород в биосфере планеты, связывая его не только в органическом веществе, но и участвуя в фиксации водорода минеральным веществом почвы. Это становится возможным в результате диссоциации кислотных продуктов метаболизма с высвобождением иона Н+. Последний, как правило, образует с молекулой воды посредством водородной связи ион гидроксония (Н3О+). При поглощении иона гидроксония некоторыми силикатами происходит их трансформация в глинистые минералы. Таким образом, как подчеркивал В.В. Добровольский, интенсивность продуцирования кислотных продуктов метаболизма является важным фактором гипергенного преобразования кристаллических горных пород и образования коры выветривания.

Из циклических процессов на поверхности Земли, в которых участвует водород, один из наиболее мощных – круговорот воды: ежегодно через атмосферу проходит более 520 тысяч кубометров влаги. Для создания фитомассы Мировой суши, существовавшей до вмешательства человека, по данным В.В. Добровольского (1998) было расщеплено примерно 1,8х1012 тонн воды и, соответственно, связано 0,3х1012 тонн водорода.

В процессе круговорота воды в биосфере происходит разделение изотопов водорода и кислорода. Пары воды при испарении обогащаются легкими изотопами, поэтому атмосферные осадки, поверхностные и грунтовые воды также обогащены легкими изотопами по сравнению с океаническими водами, имеющими устойчивый изотопный состав.

Биогеохимический цикл азота

Азот и его соединения играют в жизни биосферы такую же важную и незаменимую роль, как и углерод. Биофильность азота сравнима с биофильностью углерода. Индекс биогенного обогащения почв по отношению к земной коре, а растений по отношению к почвам составляет для азота 1000 и 10000 соответственно (Ковда, 1985).

Основным резервуаром азота в биосфере также является воздушная оболочка. Около 80% всех запасов азота сосредоточено в атмосфере планеты, что связано с направлением биогеохимических потоков соединений азота, образующихся при денитрификации. Основной формой, в которой содержится азот в атмосфере, является молекулярная – N 2 . В качестве несущественной примеси в атмосфере содержатся различные оксидные соединения азота NO x , а также аммиак NH 3 . Последний в условиях земной атмосферы наиболее неустойчив и легко окисляется. В то же время, величина окислительно-восстановительного потенциала в атмосфере недостаточна и для устойчивого существования оксидных форм азота, потому его свободная молекулярная форма и является основной.

Первичный азот в атмосфере, вероятно, появился в результате процессов дегазации верхней мантии и из вулканических выделений. Фотохимические реакции в высоких слоях атмосферы приводят к образованию соединений азота и заметному поступлению их на сушу и в океан с атмосферными осадками (3-8 кг/га аммонийного азота в год и 1,5-6 кг/га нитратного). Этот азот также включается в общий биогеохимический поток растворенных соединений, мигрирующих с водными массами, участвует в почвообразовательных процессах и в формировании биомассы растений.

В отличие от углерода, атмосферный азот не может напрямую использоваться высшими растениями. Поэтому ключевую роль в биологическом круговороте азота играют организмы-фиксаторы. Это микроорганизмы нескольких различных групп, обладающие способностью путём прямой фиксации непосредственно извлекать азот из атмосферы и, в конечном счёте, связывать его в почве. К ним относятся:

  • некоторые свободноживущие почвенные бактерии;
  • симбионтные клубеньковые бактерии (существующие в симбиозе с бобовыми);
  • цианобионты, которые также бывают симбионтами грибов, мхов, папоротников, а иногда и высших растений.

В результате деятельности организмов – фиксаторов азота он связывается в почвах в нитритной форме (соединения на основе NH 3).

Нитритные соединения азота способны мигрировать в водных растворах. При этом они окисляются и преобразуются в нитратные – соли азотной кислоты HNO 3 . В этой форме азотные соединения способны эффективно усваиваться высшими растениями и использоваться для синтеза белковых молекул на основе пептидных связей C-N. Далее, по трофическим цепям, азот попадает в организмы животных. В окружающую среду (в водные растворы и в почву) он возвращается в процессах выделительной деятельности животных или разложения органического вещества.

Возврат свободного азота в атмосферу, как и его извлечение, осуществляется в результате микробиологических процессов. Это звено круговорота функционирует благодаря деятельности почвенных бактерий-денитрификаторов, вновь переводящих азот в молекулярную форму.

В литосфере, в составе осадочных отложений, связывается весьма небольшая часть азота. Причина этого в том, что минеральные соединения азота, в отличие от карбонатов, очень хорошо растворимы. Выпадение некоторой доли азота из биологического круговорота также компенсируется вулканическими процессами. Благодаря вулканической деятельности в атмосферу поступают различные газообразные соединения азота, который в условиях географической оболочки Земли неизбежно переходит в свободную молекулярную форму.

Таким образом, основными специфическими чертами круговорота азота в биосфере можно считать следующие:

  • преимущественную концентрацию в атмосфере, играющей исключительную роль резервуара, из которой живые организмы черпают запасы необходимого им азота;
  • ведущую роль в круговороте азота почв и, в особенности, почвенных микроорганизмов, деятельность которых обеспечивает переход азота в биосфере из одних форм в другие (рис. 3.5.3).

Рис. 3.5.3. Схема биогеохимического цикла азота

Поэтому огромное количество азота в связанном виде содержит биосфера: в органическом веществе почвенного покрова (1,5х10 11 т), в биомассе растений (1,1х10 9 т), в биомассе животных (6,1х10 7 т). В больших количествах азот содержится и в некоторых биогенных ископаемых (селитры).

В то же время наблюдается парадокс – при огромном содержании азота в атмосфере вследствие чрезвычайно высокой растворимости солей азотной кислоты и солей аммония, азота в почве мало и почти всегда недостаточно для питания растений. Поэтому потребность культурных растений в азотных удобрениях всегда высока. Поэтому ежегодно в почву вносится по разным оценкам от 30 до 35 млн. тонн азота в виде минеральных удобрений. Таким образом, поступление за счет азотных удобрений составляет 30% от общих поступлений азота на сушу и в океан. Это часто приводит к существенному загрязнению окружающей среды и тяжелым заболеваниям человека и животных. Особенно велики потери нитратных форм азота, так как он не сорбируется почвой, легко вымывается природными водами, восстанавливается в газообразные формы и до 20-40% его теряется для питания растений. Существенным нарушением цикла азота является и все возрастающее количество отходов животноводства, промышленных отходов и стоков больших городов, поступление в атмосферу аммония и оксидов азота при сжигании угля, нефти, мазута и т.д. Опасно проникновение оксидов азота в стратосферу (выхлопы сверхзвуковых самолетов, ракет, ядерные взрывы), так как это может быть причиной разрушения озонового слоя. Все это, естественно, сказывается на биогеохимическом цикле азота.

Биогеохимический цикл серы

Сера также является одним из элементов, играющих чрезвычайно важную роль в круговороте веществ биосферы. Она относится к числу химических элементов, наиболее необходимых для живых организмов. В частности, она является компонентом аминокислот. Она предопределяет важные биохимические процессы живой клетки, является незаменимым компонентом питания растений и микрофлоры. Соединения серы участвуют в формировании химического состава почв, в значительных количествах присутствуют в подземных водах, что играет решающую роль в процессах засоления почв.

Содержание серы в земной коре составляет 4,7х10-2%, в почве – 8,5х10-2%, в океане – 8,8х10-2% (Виноградов, 1962). Однако, в засоленных почвах содержание серы может достигать значений, измеряемых целыми процентами. Таким образом, основным резервуаром, из которого она черпается живыми организмами, является литосфера. Это обусловлено тем, что устойчивое существование сернистых соединений в условиях современной атмосферы Земли, содержащей свободный кислород и пары Н 2 О, невозможно. Сероводород (H 2 S) в кислородной среде окисляется, а кислородные соединения серы, реагируя с Н 2 О, образуют серную кислоту H 2 SO 4 , которая выпадает на поверхность Земли в составе кислотных дождей. Поэтому оксиды серы SO х, хотя и могут усваиваться растениями непосредственно из атмосферы, существенной роли в круговороте серы этот процесс не играет.

Сера имеет несколько изотопов, из которых в природных соединениях наиболее распространены S 32 (>95%) и S 34 (4,18%). В результате биологических и биогеохимических процессов происходит изменение в соотношении этих изотопов в сторону увеличения содержаний более легкого изотопа в верхних гумусовых горизонтах почв.

Изотопный состав серы подземных, почвенно-грунтовых вод и водорастворимых сульфатов из горизонта С сульфатно-содовых солончаков является сходным.

В составе земной коры соединения серы существуют, в основном, в двух минеральных формах: сульфидной (соли сероводородной кислоты) и сульфатной (соли серной кислоты). Редко встречается самородная сера, которая неустойчива и склонна, в зависимости, от значений окислительно-восстановительного потенциала среды, формировать или кислородные, или водородные соединения.

Первичной, глубинной по происхождению, минеральной формой нахождения серы в земной коре, является сульфидная. Сульфидные соединения в условиях биосферы практически нерастворимы, и потому сульфидная сера растениями не усваивается. Но, в то же время, сульфиды в кислородной среде неустойчивы. Поэтому сульфиды на земной поверхности, как правило, окисляются, и в результате этого сера входит в состав сульфатных соединений. Сульфатные соли обладают достаточно хорошей растворимостью, и сера в географической оболочке активно мигрирует в водных растворах в составе сульфат-иона SO 4 2- .

Именно в этой, сульфатной форме сера, в составе водных растворов, эффективно усваивается растениями, а далее – животными организмами. Усвоению способствует то, что сульфатные соединения серы способны накапливаться в почвах, участвуя в процессах обменной сорбции и входя при этом в состав почвенного поглощающего комплекса (ППК).

Разложение органического вещества в кислородной среде приводит к возвращению серы в почву и природные воды. Сульфатная сера мигрирует в водных растворах, и может снова использоваться растениями. Если же разложение идёт в бескислородной среде, ведущую роль играет деятельность серобактерий, которые восстанавливают SO 4 2- до H 2 S. Сероводород выделяется в атмосферу, где окисляется и возвращается в другие компоненты биосферы в сульфатной форме. Часть серы в восстановительной обстановке может связываться в сульфидных соединениях, которые, при возобновлении доступа кислорода, снова окисляются и переходят в сульфатную форму.

Биогеохимический цикл серы состоит из 4 стадий (рис. 3.5.4):

  1. усвоение соединений серы живыми организмами (растениями и бактериями) и включение серы в состав белков и аминокислот.
  2. Превращение органической серы живыми организмами (животными и бактериями) в конечный продукт – сероводород.
  3. Окисление минеральной серы живыми организмами (серобактериями, тионовыми бактериями) в процессе сульфатредукции. На этой стадии происходит окисление сероводорода, элементарной серы, ее тио- и тетрасоединений.
  4. Восстановление минеральной серы живыми организмами (бактериями) в процессе десульфофикации до сероводорода. Таким образом, важнейшим звеном всего биогеохимического цикла серы в биосфере является биогенное образование сероводорода.

Рис. 3.5.4. Схема биогеохимического цикла серы

Изъятие серы из биосферного круговорота происходит в результате накопления сульфатных отложений (в основном гипсовых), слои и линзы которых становятся компонентами литосферы. Компенсируются потери во-первых, в процессах вулканизма (поступление H 2 S и SO x в атмосферу, а оттуда, с атмосферными осадками – на поверхность Земли). А во-вторых, в результате деятельности термальных вод, с которыми в верхние горизонты земной коры и на дно Мирового океана поступают сульфидные соединения.

Таким образом, к характерным особенностям круговорота серы можно отнести второстепенную роль процессов атмосферной миграции, а также многообразие форм нахождения, обусловленное переходом её из сульфидных форм в сульфатные и обратно, в зависимости от изменения окислительно-восстановительных условий.

Промышленные процессы выносят в атмосферу большое количество серы. В отдельных случаях значительная концентрация соединений серы в воздухе служит причиной нарушений в окружающей среде, в том числе, кислотных дождей. Присутствие в воздухе двуокиси серы негативно влияет как на высшие растения, так и на лишайники, причем эпифитные лишайники могут служить индикаторами повышенных содержаний серы в воздухе. Лишайники поглощают влагу из атмосферы всем слоевищем, поэтому концентрация серы в них быстро достигает предельно допустимого уровня, что ведет к гибели организмов.

Поступление серы в общий круговорот по данным Дж. П. Френда (1976) следующее:

При дегазации земной коры – 12х10 12 г/год; при выветривании осадочных пород – 42х10 12 г/год,; антропогенные поступления в виде сернистого газа – 65х1012 г/год, что в сумме составляет 119х10 12 г/год. Значительные количества серы ежегодно консервируются в виде сульфидов и сульфатов – 100х10 12 г/год и, таким образом., временно выводятся из общего биогеохимического круговорота.

Таким образом, антропогенное поступление серы в биосферу существенно изменяет круговорот этого элемента, а приход серы в биосферу превышает ее расход, в результате чего, должно происходить постепенное ее накопление.

Биогеохимический цикл фосфора.

Круговорот фосфора в природе сильно отличается от биогеохимических циклов углерода, кислорода, азота и серы, так как газовая форма соединений фосфора (например РН 3) практически не участвует в биогеохимическом цикле фосфора. То есть фосфор к накоплению в атмосфере вообще не способен. Поэтому роль «резервуара» фосфора, из которого этот элемент извлекается и используется в биологическом круговороте, так же как и для серы, играет литосфера.

Фосфор в литосфере содержится в форме фосфатных соединений (солей фосфорной кислоты). Основная доля среди них приходится на фосфат кальция – апатит. Это полигенный минерал, образующийся в различных природных процессах – как в глубинных, так и в гипергенных (в том числе и биогенных). Фосфатные соединения способны растворяться в воде, и фосфор в составе иона РО 4 3- может мигрировать в водных растворах. Из них фосфор и усваивается растениями.

Индекс биогенного обогащения почв по отношению к земной коре, а растений по отношению к почвам составляет для фосфора, так же, как и для азота 1000 и 10000 соответственно (Ковда, 1985). Для растений наиболее доступным является фосфор неспецифических органических соединений и гумуса и именно он играет главную роль в малом (локальном) биологическом цикле фосфора.

Животные являются еще большими концентраторами фосфора, чем растения. Многие из них накапливают фосфор в составе тканей мозга, скелета, панцирей.. Есть несколько способов усвоения фосфора организмами-консументами. Во-первых, прямое усвоение из растений в процессе питания. Во-вторых, водные организмы-фильтраторы извлекают фосфор из органических взвесей. В-третьих, органические соединения фосфора усваиваются организмами-илоедами при переработке ими биогенных илов.

Возврат фосфора в окружающую среду происходит при разложении органического вещества. Но возврат этот оказывается далеко не полным. В целом для соединений фосфора характерна тенденция выноса в форме водных растворов и взвесей в конечные водоёмы стока, в наибольшей мере – в Мировой Океан, где он и накапливается в составе осадочных отложений различного генезиса. Вновь вернуться в экзогенный круговорот эта часть фосфора может только в результате тектонических процессов, растягивающихся на сотни миллионов лет. В естественных условиях сохранение баланса обеспечивается сравнительно слабой подвижностью соединений фосфора, в результате которой фосфор, извлечённый растениями из почвы, большей частью возвращается в неё в результате разложения органического вещества. В почвах и породах фосфор достаточно легко фиксируется. Фиксаторами фосфора являются гидроксиды железа, марганца, алюминия, глинистые минералы (особенно, минералы группы каолинита). Однако, фиксированный фосфор может быть на 40-50% десорбирован и использован растениями. Этот процесс зависит от рН и Eh условий среды. Повышенная кислотность, образование угольной кислоты, способствуют десорбции фосфора, усилению миграции фосфорных соединений.

В восстановительной среде образуются соединения фосфора с двухвалентным железом, что тоже способствует выносу фосфора из почвы.

Миграция фосфора возможна и за счет водной и ветровой эрозии. Поэтому биогеохимический цикл фосфора значительно менее замкнут и менее обратим, чем циклы углерода и азота, а загрязнение фосфором окружающей среды особенно опасно (рис. 3.5.5).

Рис. 3.5.5. Схема биогеохимического цикла фосфора

Основными особенностями круговорота фосфора, таким образом, являются:

  • отсутствие атмосферного переноса;
  • наличие единственного источника – литосферы;
  • тенденция к накоплению в конечных водоёмах стока.

При интенсивной сельскохозяйственной эксплуатации земель потери фосфора в ландшафте становятся практически необратимыми. Компенсация возможна только за счёт применения фосфорных удобрений. Известно, что фосфорные удобрения являются важным и необходимым звеном в получении высоких урожаев сельскохозяйственных культур. Однако, все известные запасы месторождений фосфатов ограничены и по предсказаниям ученых могут истощиться уже в ближайшие 75-100 лет. В то же время, вредные соединения фосфатов в последнее время становятся одним из важнейших факторов загрязнения речных и озерных вод.

Таким образом, в последе время общая картина распределения им миграции фосфора в биосфере резко нарушена человеком. Вот слагаемые этого явления: во-первых, мобилизация фосфора из агроруд и шлаков, производство и применение фосфорных удобрений, во-вторых производство фосфорсодержащих препаратов и их использование в быту; в-третьих – производство фосфорсодержащих ресурсов продовольствия и кормов, вывоз и потребление их в зонах концентрации населения; в-четвертых – развитие рыбного промысла, добыча морских моллюсков и водорослей, что влечет за собой перераспределение фосфора из океана на сушу. В итоге наблюдается процесс фосфатизации суши, но процесс этот проявляется крайне неравномерно. Увеличивается содержание фосфора в окружающей среде больших городов. Напротив, страны, активно экспортирующие органические продукты и не применяющие фосфорных удобрений, теряют запасы фосфора в своих почвах.

Биогеохимические циклы калия и натрия

Кларк калия в земной коре составляет 2,89, а натрия 2, 46, т.е их относительные содержания очень близки.

Калий состоит из смеси 3-х изотопов: 39 К – 93,08%; 40 К -0,0119%; 41 К – 6,91%. Изотоп 40К неустойчив и превращается в соседние изобары кальция и аргона.

Превращение калия в аргон явилось основой для разработки калий-аргонового метода ядерной геохронологии.

Космическая распространенность калия, как элемента нечетного, невелика по сравнению с четными кальцием и кислородом. По размерам ион калия наиболее крупный среди других ведущих катионов литосферы. Поэтому объемный кларк калия занимает второе место после кислорода в земной коре.

Калий – химически активный металл, в самородном состоянии не встречается. Во всех химических соединениях на Земле выступает как одновалентный металл. Металлический калий на воздухе «сгорает», быстро окисляясь до К 2 О. Число минеральных видов – 115 (втрое меньше, чем у кальция и вдвое меньше, чем у натрия).. Важнейшие минералы: галоиды – сильвин, карналлит, нитраты – К-селитра, силикаты – К-полевые шпаты (ортоклаз, микроклин), флогопит, мусковит, биотит, глауконит, лейцит. По химическим свойствам калий близок к натрию, что определяет их совместную миграцию. Но их поведение в зоне гипергенеза и биосфере в целом резко различно. Большая часть калия в ходе гипергенного преобразования силикатов остается в составе вторичных глинистых минералов, поэтому калий гораздо прочнее удерживается в пределах Мировой суши, чем натрий и,как мы увидим далее, кальций. И все же частичное высвобождение ионов калия в процессах гипергенеза происходит и он активно вовлекается в биогеохимический круговорот.

Обусловлено это тем, что калий играет очень важную роль в жизни живых организмов. В условиях влажного климата при выветривании калийсодержащих минералов калий легко выщелачивается и переносится водными растворами. Однако вынос калия в коре выветривания происходит менее интенсивно, чем кальция и натрия. Это связано с тем, что крупный ион калия в большей степени сорбируется тонкодисперсными минералами. Давно известно, что ионы калия легче сорбируются и некоторыми коллоидами (например, гидроокислами железа и алюминия), чем ионы натрия. Реакции катионного обмена с глинистыми минералами также способствуют фиксации калия. В почвах также происходит обмен между ионами калия и гидроксония, которые имеют сопоставимые ионные размеры. Таким способом калий может фиксироваться в гидрослюдах, каолините, монтмориллоните. Калий в большей степени, чем натрий, поглощается наземной растительностью.

Поэтому значительная часть калия сохраняется в почвах, в то время как большая часть натрия выносится в океан. В составе стока с материков натрия почти в 2,5 раза больше, чем калия.

Калий – важнейший элемент живых организмов. Они содержат от 0,1 до 0,01% калия. В золе культурных растений до 25-60% К 2 О. Некоторые организмы способны концентрировать калий в значительных количествах. Так, в некоторых водорослях содержание калия достигает 3% живой массы. Наземные растения поглощают калий из почвы. При недостатке калия листья бледнеют и отмирают, семена теряют всхожесть. Калий легко проникает в клетки организмов и увеличивает их проницаемость для различных веществ. Он оказывает значительное влияние на обмен веществ и необходим растениям для фотосинтеза.. Кроме того, калий улучшает поступление воды в клетки растений и понижает процесс испарения, тем самым увеличивая устойчивость растений к засухе. При недостатке или избытке калия интенсивность фотосинтеза снижается, а интенсивность дыхания повышается. Недостаток калия в почвах приводит к значительному снижению урожайности растений.

Именно поэтому кларк калия в живом веществе такой же высокий, как у азота. Особенно много калия накапливают некоторые морские водоросли (до 5%).

В биологический круговорот на суше вовлекается ежегодно около 1,8х109 тонн калия (Добровольский, 1998). Освобождающаяся из системы биологического круговорота на суше масса калия частично задерживается в мертвом органическом веществе и сорбируется минеральным веществом почвы (глинистыми минералами), а частично вовлекается в водную миграцию.

Количество калия в настоящее время связанное в мертвом органическом веществе педосферы составляет по данным разных авторов от 3х109 до 6х109 тонн. Ежегодно с континетальным водным стоком в океан поступает более 61х106 тонн калия в растворенном состоянии (виде свободных ионов) и 283х106 тонн калия в составе взвесей (глинистые частицы, органическое вещество и т.д.). Калий активно мигрирует также в системе поверхность океана-атмосфера в составе аэрозолей: средняя концентрация этого элемента в атмосферных осадках над океаном - 15%. Концентрация калия в атмосферных осадках над континентами заметно выше, в среднем 0,7%. Значительное количество калия переносится с пылью с суши в океан. По оценке В.В. Добровольского эта величина составляет не менее 43х10 6 тонн в год.

В гипергенной зоне крупные концентрации калия встречаются редко и представлены эвапоритами – сильвином и карналлитом. Еще реже встречаются нитраты калия в виде калиевой селитры органогенного происхождения (образуется в условиях аридного климата).

Кларк натрия в живом веществе очень низок – 0,008 (более чем на два порядка ниже, чем у калия), что свидетельствует о низком потреблении натрия живым веществом. Однако, в малых количествах натрий необходим всем живым организмам.

В условиях влажного климата натрий легко выходит из биологического круговорота и выносится с жидким стоком за пределы ландшафта. В результате наблюдается общее обеднение последнего натрием. Содержание натрия в растительных организмах обычно очень низкое. Животные организмы нуждаются в повышенных количествах этого элемента., так как он входит в состав крови. Влияет на деятельность сердечно-сосудистой системы и почек. Поэтому животные иногда нуждаются в подкормке поваренной солью.

В сухом климате натрий концентрируется в грунтовых и озерных водах и накапливается в солончаковых почвах (действие испарительного барьера). Соответственно, и растительность галофитных сообществ содержит повышенные количества натрия.

Тем не менее, роль биологического круговорота натрия, в отличие от калия, сравнительно невелика. Зато очень значительна его водная миграция. По особенностям миграции в биосфере натрий весьма схож с хлором. Он образует легко растворимые соли, поэтому накапливается в Мировом океане, участвует в атмосферной миграции.

Основной источник подвижного натрия в биосфере – выветривающиеся изверженные породы (основной источник хлора – вулканизм).

Техногенез внес существенные коррективы в биогеохимические пути миграции натрия. Основное значение имеет добыча галита (поваренной соли), соды и мирабилита. На характер биогеохимических циклов натрия существенное влияние оказывает и орошение земель в засушливых районах.

Биогеохимические циклы кальция и магния.

Атомы кальция содержат магическое число протонов: 20 в ядре и это определяет прочность его ядерной системы. Среди легких элементов кальций представлен максимальным числом стабильных изотопов – 6, имеющих распространение: 40 Са – 96,97% (дважды магический Z=N=20) 42 Са – 0,64, 43 Са – 0,145, 44 Са – 2,06, 46 Са-0,0033, 48 Са -0,185%. По распространению в Солнечной системе он занимает 15 место, но среди металлов находится на 5 месте.

В природе он ведет себя как химически активный металл. Легко окисляется с образованием СаО. В геохимических процессах выступает как двухзарядный катион Са+2

Его ионный радиус очень близок к радиусу натрия. Число минеральных видов – 390, поэтому он относится к главным минералообразующим элементам. По числу образуемых минералов он занимает 4 место после кислорода, водорода и кремния. Например: карбонаты – кальцит, арагонит, доломит; сульфаты – ангидрит, гипс; галоиды- флюорит; фосфаты: апатит; силикаты – гранаты, пироксены, амфиболы, эпидот, плагиоклазы, цеолиты.

Плагиоклазы – наиболее распространенные минералы земной коры. Кларк кальция в литосфере составляет 2,96. Кальциевые силикаты слабо устойчивы в зоне гипергенеза и при выветривании горных пород разрушаются в первую очередь.

Кальций обладает относительно высокой миграционной способностью, во многом определяемой особенностями климата. В процессах химического выветривания кальций выщелачивается из минералов природными водами. По отношению к выветриванию кальциевые минералы образуют следующую последовательность: плагиоклаз – кальциевый авгит- кальциевый амфибол. В группе плагиоклазов богатые кальцием разности выветриваются скорее, чем натриевые. При этом природные растворы, энергично удаляющие кальций, содержат значительные количества гидрокарбонатного иона. Зато в почвах гумидных зон наблюдается значительный дефицит кальция. Очень мало его и в корах выветривания. Объясняется это высокой миграционной подвижностью данного элемента.

В ионном стоке с материков кальций занимает первое место среди катионов. Реками он выносится главным образом в виде взвесей карбонатов, сульфатов и бикарбоната в растворенном состоянии. Геохимическая история кальция в океане связана с карбонатной системой равновесия, температурой воды и деятельностью живых организмов.

Кальций – один из важнейших элементов живых организмов – от простейших до высших млекопитающих. Холодные воды высоких широт и морские глубины недосыщены СаСО 3 из-за низких температур и рН, поэтому содержащаяся в воде угольная кислота растворяет СаСО 3 донных отложений. Именно поэтому морские организмы в высоких широтах избегают строить свои скелеты из СаСО 3 . В экваториальных широтах установлена область пересыщения СаСО 3 . Здесь наблюдается массовый рост коралловых рифов, у многих живущих здесь организмов массивные карбонатные скелеты и раковины.

Миграция кальция в океане с участием живых организмов – наиболее важное звено в его круговороте. По А.П. Виноградову реки ежегодно приносят в океан и1*10 15 т СаСО 3 . Куда же он делся?. Примерно столько же его ежегодно захороняется в донных отложениях океана. Живые организмы океана концентрируют кальций в виде арагонита и кальцита. Арагонит, однако, неустойчив и со временем переходит в кальцит. В океане мы сталкиваемся с уникальными явлениями быстрого роста крупных кристаллов в отдельных организмах. В некоторых раковинах двустворчатых моллюсков встречаются кристаллы кальцита длиной более 7 см, в тропических морях обитают морские ежи, имеющие длинные иголки из кальцита. У многих иглокожих наблюдается адаптация живого тела организмов к форме кристаллов. В этом случае мы встречаем особый вид симбиоза между организмами и кристаллами.

В аридном климате кальций легко выпадает из растворов в виде карбонатов, формируя толщи хемогенных карбонатных пород и иллювиально-карбонатные горизонты в почвах.

Небольшая часть ионов кальция морской воды осаждается в замкнутых водоемах в эвапоритовых условиях химическим путем.

Кальций играет важную роль в процессах почвообразования. Он входит в состав почвенно-поглощающего комплекса, участвует в обменных реакциях почвенного раствора, обусловливая буферную способность почв в кислом интервале среды. Гуматы кальция играют важную роль в формировании структуры почвы. Кроме того, кальций активно участвует в процессах осаждения полуторных окислов, марганца, нередко образуя конкреции совместно с этими элементами и кремнеземом.

В почвах кислого ряда, характеризующихся значительным проявлением процесса выщелачивания, наблюдается явление биогенного накопления кальция в подстилке и аккумулятивных поверхностных горизонтах почв. Он входит в группу элементов-биофилов. Поэтому кальций активно участвует в биологическом круговороте. Масштабы вовлечения кальция значительно различаются в разных природных зонах.

В агроландшафтах значительная часть кальция отчуждается вместе с урожаем.

Но нарушение биогеохимического круговорота кальция в настоящее время происходит не только и не столько за счет отчуждения части его с сельскохозяйственной продукцией, но и за счет использования карбонатных пород в строительстве, сельском хозяйстве (известкование почв), металлургической промышленности.

Клак магния уступает кларку кальция и составляет 1,87, но распределение магния очень неоднородно. По размеру ион магния близок к ионам двухвалентного железа и никеля и совместно с ними входит в состав оливинов и пироксенов, концентрируясь в основных и особенно ультраосновных магматических горных породах.

В то же время, магний накапливается в океане и соляных озерах и помиграционной способности приближается к таким элементам как натрий и калий. Обусловлено это хорошей растворимостью хлоридов и сульфатов магния. В отличие от других щелочноземельных и щелочных металлов магний, благодаря малому размеру ионов, легко входит в кристаллическую решетку глинистых минералов, образуя вторичные магнезиальные алюмосиликаты.

Магний – биофильный элемент. Он входит в состав хлорофилла, который при недостатке этого элемента разрушается. Растение реагирует на недостаток магния в почве оттоком хлорофилла из старых листьев к молодым. Передвижение идет по жилкам листа. Поэтому они долгое время остаются зелеными, в то время как межпрожилковые участки листа желтеют. Известны и болезни животных. Связанные с недостатком магния. Тем не менее, биофильность магния меньше, чем у кальция и калия.

В гумидных ландшафтах магний, как и кальций выщелачивается из почв, хотя его подвижность ниже. Чем у кальция. Связано это с действием нескольких геохимических барьеров. Во-первых, магний активно поглощается живым веществом; во- вторых – он, так же как и калий входит в кристаллические решетки вторичных силикатов и, наконец, сорбируется глинистыми коллоидами и гумусом. Все же значительная часть магния выносится с жидким стоком и в составе грунтовых и речных вод магний находится на втором месте после кальция.

В аридных условиях на распределение магния влияет высокая растворимость его хлоридов и сульфатов. В результате наблюдается накопление этих солей на испарительных барьерах и формирование солончаков.

В океан магний попадает из выветривающихся горных пород и масштабы этого поступления значительны (особенно. В прошлом). По подсчетам В.М. Гольдшмидта за время геологической истории с материков в океан поступило 12,6 г магния на каждый килограмм океанической воды. Однако. Содержание магния в воде современных океанов составляет всего 1,3 г. Это обусловлено многократным участием каждого атома магния в большом геологическом круговороте, отложением доломитов и других содержащих магний осадочных пород.

Миграция магния на протяжении геологической истории существенно менялась. Если в докембрийских известняках содержится до 12,6% магния, то в современных – только 1%. Образование доломитов в открытых морях прекратилось еще в конце палеозоя. В настоящее время доломиты осаждаются только в некоторых лагунах.

Технофильность магния пока значительно ниже, чем у кальция и натрия. До начала ХХ века использовались только доломит и магнезит. Только в последнее время стали широко использовать сплавы, содержащие магний. В обедненных магнием ландшафтах наблюдается незначительное его накопление за счет внесения магнийсодержащих удобрений и известкования почв с применением доломита.

Таким образом, в целом для биогеохимических циклов всех щелочных и щелочноземельных металлов характерна незамкнутость глобальных годовых циклов. В результате наблюдается интенсивная аккумуляция этих элементов в осадках Мирового океана: до 99% кальция, 98% калия и свыше 60% натрия сосредоточено по данным В.В. Добровольского в осадочных породах.

Биогеохимический цикл кремния.

Кремний является вторым по распространенности (после кислорода) химическим элементом в земной коре. Его кларки в земной коре – 29,5, в почве – 33, в океане – 5х10-5. Однако, несмотря на огромную распространенность кремния и его соединений в природе (кварц и силикаты составляют 87% литосферы), биогеохимические циклы кремния (особенно на суше) изучены еще недостаточно.

Недаром В.И. Вернадский считал, что никакой организм в биосфере не может существовать без кремния, необходимого для образования клеток и тканей растений и животных, их скелетов. Живое вещество извлекает кремний из природных вод и почв для питания и функционирования биохимических процессов, высвобождая его затем с экскрементами и при отмирании. В результате отмирания миллиардов организмов огромные массы кремнезема откладываются на дне водоемов. Так формируется биогеохимический цикл кремния. В.И. Вернадский подчеркивал, что историю кремнезема нельзя понять без изучения результатов жизнедеятельности организмов.

М.Страхов доказал возможность исключительно биогенного извлечения SiO2 из поверхностных вод. Однако, поступление растворенного кремнезема в океан с суши недостаточно для нормального развития фитопланктона. Именно поэтому в умеренных и тропических широтах в океане слабо развиты организмы с кремнистым скелетом. При существующей насыщенности воды кремнеземом для нормального развития фитопланктона диатомовых водорослей каждый атом кремния должен в течение года использоваться многократно (десятки и даже сотни раз). Из всей массы кремнезема, продуцированного в поверхностном фотосинтезирующем слое, донных отложений достигает не более 0,1части, а нередко это только 0,05-0,01 часть. Остальной кремнезем снова переходит в водорастворимое состояние. В дальнейшем, он захватывается из воды новыми поколениями диатомовых водорослей, кремнистых губок и радиолярий. Тем не менее, доходящая до дна 0,1-0,01 часть остатков скелетов диатомового планктона приводит к значительным по масштабам накоплениям осадочных кремнистых пород. Эта ветвь кругооборота кремния относительно статична и необратима и часть кремнезема именно таким путем выводится из биогеохимического круговорота.

Для нас важнее другая, более динамичная ветвь круговорота, которая и является собственно цикличной. Это тот кремний, который много раз за год переходит из организмов фитопланктона в окружающую среду и обратно. В этих переходах проявляется наиболее важная функция водного биогеохимического цикла кремния – функция массо- и энергопереноса вещества из поверхностных более глубокие зоны Мирового океана.

Вторая особенность биогеохимического цикла кремния в Мировом океане – его неразрывная связь с углеродом.

Континентальная ветвь круговорота кремния сложна. Водная миграция кремнезема тесно связана с ландшафтно-геохимическими условиями: составом растительности, и литологией подстилающих отложений. Подвижность кремнезема резко возрастает с увеличением рН среды, особенно, в щелочном интервале. При рН=10-11 концентрация кремнезема может достигать 200 мг/л. Сильно увеличивает растворимость аморфного кремнезема и повышение температуры. Сульфаты, бикарбонаты и карбонаты магния и кальция резко снижают растворимость кремнезема и вызывают его осаждение. В условиях сильнокислой среды рН=1-2 растворимость кремнезема также сильно повышается. Некоторые растения являются концентраторами кремния.

Мощным механизмом, приводящим в движение этот круговорот является растительный покров суши, в котором происходят разнообразные процессы образования содержащих кремний органогенных минералов (биолитов). Под биолитами в данном случае понимаются минералы, образующиеся внутри организма в процессе его жизнедеятельности. Их роль в круговороте кремния чрезвычайно велика, но изучена недостаточно. В основном, кремнезем инкрустирует клеточные оболочки. Больше всего биолитов кремнезема содержат злаки, осоки, хвощи, папоротники, мхи, пальмы, хвоя сосен, елей, листья и кора вяза, осины, дуба. В золе ковылей содержание кремнезема по данным Парфенова и Ярилова может достигать 80%. В стволах бамбука иногда обнаруживаются образования, сложенные опалом, достигавшие в длину 4 см и имевшие массу до 16 г! Генезис почвенной кремнекислоты в некоторых условиях напрямую связан с накоплением этого элемента живыми организмами. Наиболее яркий пример – образование солодей, кремнекислота которых накапливалась благодаря деятельности диатомовых водорослей. В процессе жизнедеятельности сине-зеленых водорослей происходит «захват» железа, марганца и кремнезема с образованием биолитов. Соотношение процессов накопления и выноса кремнезема в условиях умеренной зоны сдвинуто в сторону накопления. Растительный покров суши, особенно хвойные леса, выступает как мощный механизм, перекачивающий массы кремнезема из горных пород, почв и природных вод, и возвращающий их снова в ландшафт в форме биолитов. В дальнейшем опал биолитов переходит в халцедон и даже во вторичный кварц. Значительная же часть кремнекислоты биолитов включается в активную миграцию в почвенно-грунтовых водах в форме коллоидных и истинных растворов.

В результате воздействия аэрозолей кремнезема на живые организмы (животные и человек) развивается серьезное заболевание – силикоз.

Биогеохимические циклы алюминия, железа и марганца

Как Вы уже знаете, алюминий один из трех наиболее распространенных элементов земной коры. Его кларк – 8,05. Железо по распространенности занимает второе место после алюминия среди металлов и четвертое среди всех элементов земной коры. Его кларк составляет 4,65. Содержание марганца в земной коре значительно ниже -0,1%. Эти два элемента занимают соседние места в периодической системе элементов Д.И. Менделеева и имеют сходное строение электронных оболочек. Однако марганец мигрирует более активно, т.к. значение рН, при котором выпадает в осадок его гидроксид, выше, чем для железа. Железо и марганец активно вовлекаются в биологический круговорот, так как входят в состав многих ферментов. Железо участвует в образовании хлорофилла и входит в состав гемоглобина. Марганец принимает участие в окислительно-восстановительных реакций – дыхании, фотосинтезе и усвоении азота. Участие алюминия в биологическом круговороте ограничено. Хотя в земной коре это самый распространенный металл, биофильность его очень низкая, кларк живого вещества всего 5х10-3.

Биогеохимичекие циклы железа и марганца в решающей степени зависят от условий увлажнения, реакции среды, степени аэрации почвы, условий разложения органического вещества. Миграция алюминия в меньшей степени зависит от окислительно-восстановительных условий, так как он обладает постоянной валентностью. В то же время, амфотерность этого элемента обуславливает сильную зависимость его миграции от кислотно-основных условий среды: в сильно кислой среде он ведет себя как катион, а в сильно щелочной – как анион. В нейтральных и слабощелочных водах степей и пустынь он почти не мигрирует, наиболее высока подвижность этого металла в сильно кислых водах районов активного вулканизма и зон окисления сульфидных месторождений. Под защитой органических коллоидов алюминий активно мигрирует в болотных водах. Тем не менее, интенсивность миграции алюминия в целом значительно ниже, чем у железа и марганца, а его минералы более устойчивы. Слабая подвижность алюминия определяет остаточное (за счет выноса более подвижных элементов) накопление его гидроксидов в коре выветривания влажных тропиков и образование бокситов.

Известно, что соединения алюминия, железа и марганца в почвах с промывным режимом мигрируют в вертикальном направлении и образуют иллювиальные горизонты, обогащенные полуторными окислами и марганцем. Многими исследователями доказано, что миграция полуторных окислов в условиях промывного типа водного режима происходит в виде высокодисперсных золей, стабилизированных кислым гумусом. При этом немаловажную роль играет создание анаэробной обстановки, обуславливающей образование соединений двухвалентного железа и марганца. Решающее значение имеют агрессивные фульвокислоты, разрушающие почвенные минералы и образующие с алюминием, железом и марганцем легкоподвижные комплексные соединения.

Соединения железа и марганца активно мигрируют с боковым внутрипочвенным стоком, образуя скопления конкреций в болотах. Луговых и глеевых почвах, мелководных озерах и лагунах. Это свидетельствует о способности этих соединений мигрировать на весьма большие расстояния. Осаждение железа в аккумулятивных ландшафтах происходит в виде карбонатов железа, окислов разной степени гидратированности, а также фосфатов и гуматов. В степях и пустынях в условиях щелочной среды эти элементы мигрируют слабо.

Миграция железа и марганца возможна и в составе живого вещества. После отмирания организмов и их минерализации в почве часть этих элементов закрепляется в почве, другая же часть поступает в природные воды. Возвращаясь в почву, они начинают новый биогеохимический цикл.

В результате процессов выветривания железо в огромных количествах выносится в океаны. Вынос железа реками в океан происходит в разнообразных формах – в виде грубых взвесей обломков минералов и пород, содержащих железо в кристаллической решетке (силикатов, в т.ч. глинистых минералов), в виде коллоидов, содержащих железо в абсорбированном состоянии, в виде гидратов, гуматов и органических содинений закисного железа.

Недостаток железа приводит у растений к заболеванию, известному под названием хлороз. Однако непосредственное накопление железа в значительных количествах характерно лишь для немногих организмов. В этом отношении уникальны железобактерии, окисляющие двухвалентное железо, в результате чего образуется лимонит. Диатомовые водоросли способны усваивать железо из нерастворимых коллоидов. Железо потребляет и зоопланктон с красной кровью (мелкие рачки). При гибели этих организмов и растворения детритовых частей определенное количество железа также переходит в раствор в виде гидратов и других форм. В качестве особых случае концентрации железа организмами можно отметить наличие магнетита и гетита в в зубах некоторых современных гастропод.

Биогеохимический цикл железа и марганца существенно нарушается техногенными процессами, причем, несмотря на значительно более высокое содержание в земной коре железа, технофильность этих элементов примерно равна. В ноосфере алюминий играет исключительно важную роль, но технофильность его почти в 100 раз ниже, чем у железа.

Биогеохимические циклы тяжелых металлов.

Тяжелыми металлами обычно называют химические элементы, имеющие атомную массу более 50 единиц. Несмотря на сравнительно низкую распространенность этих элементов в природе, они оказывают большое влияние на биогеохимические процессы в биосфере. Так как многие изних оказывают выраженное токсическое действие на живые организмы.

Многочисленными исследованиями установлено, что наиболее токсичными являются следующие 9 элементов: Cr, As, Ni, Sb, Pb, Vo, Cd, Hg, Ta. Польские ученые провели ранжирование тяжелых металлов по потенциалу загрязнения на 4 группы. К группе элементов с очень высоким потенциалом загрязнения отнесены кадмий, ртуть, свинец, медь, таллий, олово, хром, сурьма, серебро, золото.

К группе элементов с высоким потенциалом загрязнения относятся висмут, уран. Молибден, барий, марганец, титан, железо, селен, теллур. К группе элементов со средним потенциалом загрязнения относятся фтор, бериллий, ванадий, рубидий, никель, кобальт, мышьяк, германий, индий, цезий, вольфрам. Элементы со слабым потенциалом загрязнения – стронций, цирконий, лантан, ниобий.

Как видно, 4 металла из первой группы (с очень высоким потенциалом загрязнения) – свинец, ртуть, кадмий и хром

В известной степени каждый крупный город является причиной возникновения биогеохимических аномалий, в том числе и опасных для человека.

Общеизвестно, что накопление свинца и цинка происходит в зонах интенсивного движения автотранспорта, вдоль автострад и в индустриальных центрах. Почвы в сельской местности содержат в 10-20 раз меньше свинца. Чем почвы городов. Свинец обладает способностью накапливаться в органическом веществе почв.

Доступность тяжелых металлов растениям зависит от вида растений, почвенных и климатических условий. У каждого вида растений концентрации тяжелых металлов могут варьировать в различных частях и органах, а также зависят от возраста растений.

К почвенным факторам, существенно влияющим на доступность для растений тяжелых металлов относятся: гранулометрический состав, реакция среды почвы, содержание органического вещества, катионообменная способность и дренаж. В более тяжелых почвах меньшая опасность возможной адсорбции растениями избыточного (токсичного) количества тяжелых металлов. С повышением рН почвенного раствора возрастает вероятность образования нерастворимых гидроксидов и карбонатов. Сложилось мнение, что для снижения до минимума доступности токсичного металла в почве необходимо поддерживать рН не ниже 6,5. Металлы могут образовывать сложные комплексные соединения с органическим веществом почвы, и поэтому в почвах с высоким содержанием гумуса они менее доступны для поглощения растениями. Обменная емкость катионов зависит, главным образом, от содержания и минералогического состава глинистой части почв и содержания в них органического вещества. Чем выше обменная емкость катионов, тем больше удерживающая способность почв по отношению к тяжелым металлам.

Избыток воды в почве способствует появлению в ней металлов с низкой валентностью в более растворимой форме.

Приоритетные загрязнители биосферы – ртуть, свинец, кадмий, цинк, медь. Увеличение их концентрации в воде, почве, воздухе и биоте является прямым показателем опасности для животных и человека.

Термин "биогеохимия» предложен русским ученым В.И. Вернадским и означает область науки об обмене веществ между живым и неживым веществом биосферы («био» относится к живым организмам, а "гео" - к горным породам, воздуху и воде). Геохимия изучает химический состав Земли и миграцию элементов между различными частями биосферы: литосферой, гидросферой и атмосферой.

Для нормального существования большинства экосистем и организмов, их населяющих, максимальное значение имеют круговороты таких элементов, как водород, углерод, азот, сера и фосфор, входящих в состав любого живого вещества.

В круговоротах любых химических элементов и веществ различают две части или два «фонда»:

1) резервный фонд - большая масса медленно движущихся в биогеохимическом цикле веществ;

2) обменный (подвижный) фонд - меньшая, но более активная масса вещества, для которого характерен быстрый обмен между живыми организмами и их непосредственным окружением.

В целом биогеохимические циклы обычно подразделяют на два основных типа:

1) круговорот газообразных веществ с резервным фондом в атмосфере или гидросфере (океане); 2)осадочный цикл с резервным фондом и земной коре. Резервные фонды в атмосфере и гидросфере легко доступны, поэтому такие круговороты относительно устойчивы. Осадочные биогеохимические циклы, как правило, менее стабильны.

Удивительное постоянство процентного содержания различных химических элементов в компонентах экосистемы исторически обусловлено существованием непрерывных и сбалансированных круговоротов веществ, что создает возможность для саморегуляции (гомостаза) системы и поддержания ее устойчивости.

Процессы новообразования органического вещества в ходе фотосинтеза и процессы его разрушения (распада) определяют скорость и сбалансированность круговоротов элементов в биосфере и происходят только за счет поступающей извне солнечной энергии. Следовательно, скорость и направление циклического движения элементов в экосистеме определяются потоками энергии, проходящей через биологическое сообщество.

Обобщенная схема биогеохимических циклов в сочетании с упрощенной схемой потока энергии (рис. 10.1) показывает, как однонаправленный поток энергии приводит в движение круговорот вещества. Обращает на себя внимание тот факт, что химические элементы, вовлеченные в процесс круговорота, многократно проходят один и тот же путь, а энергия течет лишь в одну сторону.

На рис. 10.1 резервный фонд обозначен как фонд элементов питания, а обменный фонд представлен темным кольцом, идущим от автотрофов к гетеротрофам и от них снова к автотрофам. Иногда резервный фонд называют недоступным, а активный обменный фонд - доступным. Например, агрономы обычно измеряют плодородие почвы, оценивая концентрацию в почве тех форм элементов питания, которые непосредственно доступны для растений.

Обменный фонд образуется за счет веществ, которые возвращаются в круговорот двумя основными путями - либо в результате прижизненных выделений во внешнюю среду продуктов метаболизма животными и растениями, либо при разрушении (минерализации) мертвого органического вещества (детрита) микроорганизмами.

Влияние человека на биогеохимические круговороты заключается в том, что при антропогенном вмешательстве эти процессы могут перестать быть замкнутыми и в одних местах боиосферы может возникнуть недостаток, а в других - избыток каких-либо веществ. В конечном счете меры по охране природных ресурсов должны быть направлены на предотвращение нарушений цикличности, т.e. сбалансированности круговоротов важнейших элементов в биосфере. Знание особенностей биогехимических циклов - необходимое условие рационального использования природных ресурсов и сохранения природных экосистем.

Рис. 10.1. Схема биогеохимического цикла на фоне упрощенной схемы потока энергии:

Р G - валовая первичная продукция; Р N - чистая первичная продукция (может быть потреблена гетерофами в самой системе или же экспортирована); Р - вторичная продукция, R 1 -дыхание автотрофов (растений); R 2 - дыхание гетеротрофов (животных и бактерий)

Любую экосистему можно представить в виде ряда блоков, через которые проходят различные вещества. В круговоротах минеральных веществ в экосистеме, как правило, участвуют три активных блока: живые организмы, мертвый органический детрит, доступные неорганические вещества в среде обитания.

Рассмотрим биогеохимический циклы азота, фосфора и серы. Биогеохимический цикл азота (биогенного элемента, входящего в состав белков и нуклеиновых кислот) может служить примером очень сложного хорошо сбалансированного цикла газообразного вещества. Биогеохимический цикл фосфора - осадочный цикл с менее совершенной регуляцией круговорота фосфора.

Биогеохимический круговорот серы служит примером функциональной связи между атмосферой, водой и земной корой, так как сера активно циркулирует в каждом из этих «резервуаров» и между ними. В круговoротax азота и серы ключевую роль играют микроорганизмы.

Круговорот азота , включающий как газовую, так и минеральную фазу, несмотря на большое число участвующих в нем организмов, обеспечивает быструю циркуляцию азота в различных экосистемах (рис. 10.2).

Рис. 10.2 . Схема круговорота азота (серый прямоугольник – резервный фонд азота)

Основной источник и резервуар азота - атмосфера, масса которой на 79% состоит из этого элемента. Участие живых организмов в круговороте азота подчинено строгой иерархии: только определенные виды микроорганизмов (бактерий) осуществляют биохимические процессы трансформации соединении азота на отдельных ключевых этапах этого цикла.

Большинство организмов, обитающих в биосфере, непосредственно не может использовать газообразный молекулярный азот (N 2). Растения усваивают азот только в составе нитрат - ионов (NО 3 -) или ионов аммония (NH 4 +). Нитраты образуются в основном в результате жизнедеятельности микроорганизмов - азотфиксаторов , к которым относятся симбиотические бактерии рода Rhizobium, живущие в клубеньках на корнях бобовых растений, бактерии рода Azotobacter, обитающие в почве; и цианобактерии (сине-зеленые). Все микроорганизмы - азотофиксаторы способны фиксировать атмосферный азот благодаря очень сложному обмену веществ, включающему в качестве катализаторов молибден и гемоглобин. Симбиотические микроорганизмы-азотофиксаторы проникают в ткани корневой системы бобовых растений. Растения обеспечивают симбиотических бактерий местообитанием и пищей (сахарами), а те поставляют растению органический азот, который они синтезируют из газообразного азота. Свободно живущие не симбиотические микроорганизмы - азотофиксаторы (Azotobacter в цианобактерии) также усваивают газообразный азот и переводят его в органическую форму. При этом азот включается в синтезируемые белковые молекулы. После отмирания азотофиксирующих бактерий и минерализации органического вещества азот в нитратной форме (NO 3 -) обогащает почву.



Животные могут поглощать азот только в составе органических веществ растительного или животного происхождения. По типичным пищевым цепям (растения - травоядные - хищники) органический азот передается от микроорганизмов - азотофиксаторов растениям и всем другим организмам экосистемы. В почвах происходят процессы аммонификации (образования ионов аммония) и нитрификации (образования нитрат - ионов), состоящие из ряда последовательных реакций, в ходе которых при участии разных групп микроорганизмов происходит разрушение мертвого органического вещества.

Молекулярный азот возвращается в атмосферу и биогеохимический цикл азота замыкается в процессе жизнедеятельности бактерий - денитрификаторов рода Pseudomonas, восстанавливающих нитраты до свободного азота и кислорода в бескислородных (анаэробных) условиях.

Нитраты постоянно образуются из молекулярного азота в небольших количествах без участия микроорганизмов-азотфиксаторов при электрических грозовых разрядах в атмосфере. Затем эти нитраты выпадают с дождями на поверхность почвы. Еще одним источником поступления атмосферного азота в биогеохимический цикл -вулканы, компенсирующие потери азота, выключенного из круговорота при осаждении его на дно океанов.

Для того чтобы сопоставить масштабы различных процессов поступления атмосферного азота в биогеохимический цикл, необходимо иметь в виду следующее: среднегодовое поступление нитратного азота абиотического происхождения (грозовые разряды) из атмосферы в почву не превышает 10 кг/га, свободные микроорганизмы- азотофиксаторы вносят до 25 кг/га, в то время как симбиотические азотофиксирующие бактерии Rhizobium в среднем продуцируют до 200 кг/га.

Преобладающая часть азота, содержащегося в органическом веществе, перерабатывается денитрифицирующими бактериями в газообразный азот (N 2) и вновь возвращается в атмосферу. Лишь около 10% минерального азота поглощается из почвы высшими растениями и оказывается в распоряжении многоклеточных организмов.

Круговорот фосфора. Фосфор входит в состав богатых энергией органических веществ - аденознитрифосфата (АТФ) и аденозиндифосфата (АДФ), являющихся переносчиками и аккумуляторами энергии в клетках растений и животных. Основным источником фосфора для растений служат фосфат-ионы (РО 4 -). Растения поглощают фосфат-ионы из окружающей среды (почвы или воды) и в процессе биосинтеза включают фосфор в состав оpганических веществ, образующих биомассу растений. Животные, поедая растения, получают фосфор в органической форме. Таким образом, переводя фосфор из минеральной формы в органическую, растения делают его доступным для животных. Круговорот фосфора в биосфере связан с процессами обмена веществ в растениях и животных. Этот важный биогенный элемент, содержание которого наземных частях растений и водорослях варьирует от 0.01 до 0,1%, а у животных от 0.1 % до нескольких процентов, в процессе циркуляции постепенно переходит из органических соединений в фосфаты, которые снова могут использоваться растениями (рис 10.3).

Рис. 10.3. Схема круговорота фосфора (серый прямоугольник - резервный фонд фосфора)

Если сравнить содержание фосфора в живом и неживом веществе биосферы, то окажется что диспропорция очень велика. Поэтому фосфор относится к числу наиболее дефицитных биогенных макроэлементов, определяющих развитие жизни.

Естественный биогеохимический круговорот фосфора в биосфере не сбалансирован. Основные запасы фосфора содержатся в горных породах (апатиты, фосфориты), из которых в процессе выщелачивания водорастворимые фосфаты (РО 4 3-) попадают в наземные и водные экосистемы. Попадая в экосистемы суши, фосфор поглощается растениями из водного раствора в виде неорганического фосфат - иона (РО 4 3-) и включается в состав различных фосфорорганических соединений. По пищевым цепям фосфорсодержащее органическое вещество переходит от растений к другим организмам экосистемы. Химически связанный фосфор попадает с остатками растений и животных в почву, где подвергается воздействию микроорганизмов и превращается в минеральные соединения фосфора, доступные растениям в ходе фотосинтеза. Вынос фосфатов из наземных экосистем в континентальные водоемы обогащает последние фосфором. Речной сток ежегодно выносит в Мировой океан около 2 млн. т фосфора.

В морских экосистемах минеральный фосфор переходит в состав фитопланктона, служащего пищей другим организмам моря, и накапливается в тканях морских животных, например, рыб. Часть органических соединений фосфора мигрирует по пищевым цепям в пределах небольших глубин, другая часть опускается на большие глубины в процессе осаждения мертвого органического вещества. Отмершие остатки организмов приводят к накоплению фосфора на разных глубинах. Отсюда следует, что фосфор, попадая в водоемы тем или иным путем, насыщает, а нередко и перенасыщает их экосистемы. Обратное движение фосфора из Мирового океана на сушу и в наземные водоемы ограничено (вылов рыб и других организмов человеком) и не компенсирует вынос фосфора с суши. И только в значительных временных интервалах, когда в процессе тектонического движения земной коры дно океанов становится сушей, происходит замыкание этого биогеохимического цикла.

Круговорот серы . Существуют многочисленные газообразные соединения серы, например сероводород (H 2 S) и сернистый ангидрид (SO 3).

Однако преобладающая часть круговорота этого элемента имеет осадочную природу и происходит в почве и воде.

Подробная схема круговорота серы приведена на рис. 10.4.

Рис 10.4. Схема круговорота серы

Основной источник серы, доступный живым организмам, - сульфаты (SO 4 2-). Многие сульфаты растворимы в воде, и это определяет доступность неорганической серы для растений, так как многие элементы (в том числе и сера) могут поступать в живые организмы только в растворенном виде. Растения, поглощая сульфаты, восстанавливают их и вырабатывают незаменимые серосодержащие аминокислоты (метионин, цистеин, цистин), играющие важную роль в создании третичной (пространственной) структуры белков. Животные и микроорганизмы, потребляя растительную биомассу в пищу, усваивают серосодержащие органические соединения.

При разложении мертвого органического вещества (опавшая листва, погибшие организмы, продукты выделения) гетеротрофными бактериями сера вновь переходит в неорганическую форму (преимущественно в виде сероводорода H 2 S). Некоторые бактерии могут вырабатывать сероводород из сульфатов в анаэробных (бескислородных) условиях. Другая немногочисленная группа бактерий может восстанавливать сероводород до элементарной серы (S).

С другой стороны, существуют бактерии, опять окисляющие сероводород до сульфатов, благодаря чему вновь увеличивается запас серы в доступной для растений форме. Подобные бактерии называются хемосинтезирующими , так как они синтезируют органические вещества за счет энергии окисления простых химических веществ (в данном случае сероводорода). Этим обстоятельством они отличаются от фотосинтезирующих организмов, создающих органические вещества за счет энергии света.

Последняя фаза круговорота серы полностью осадочная (проходящая в осадочных породах). Она характеризуется выпадением в осадок этого элемента в анаэробных условиях в присутствии железа. Таким образом, процесс заканчивается медленным и постепенным накоплением серы в глубоко лежащих осадочных породах.

В целом экосистеме, по сравнению с азотом и фосфором, требуется значительно меньше серы. Поэтому сера реже является лимитирующим фактором для развития растений и животных. Вместе с тем круговорот серы относится к ключевым в общем процессе создания разложения органического вещества биомассы в биосфере. К примеру, при образовании в осадках сульфидов железа фосфор из нерастворимой формы переходит в растворимую и становится доступным для фотосинтезирующих организмов. Это служит наглядным подтверждением того, что один круговорот связан с другим и регулируется им.

Круговорот углерода . Углерод в качестве важнейшего структурного элемента входит в состав любого органического вещества, поэтому его круговорот во многом определяет интенсивность образования и разрушения органического вещества в различных частях биосферы. В природе углерод существует в двух наиболее распространенных минеральных формах - в виде карбонатов (известняков) и в виде подвижной формы углекислого газа (yглекислоты, СО 2). В биохимическом круговороте углерода атмосферный фонд углекислого газa относительно невелик (711 млрд. т) в сравнении с запасами углерода в океанах (39000 млрд. т), в ископаемом топливе (12000 млрд. т) и наземных экосистемах (3100 млрд. т).

Приблизительно 93 % углекислого газа находится в океане, который способен удерживать намного больше этого химического соединения, чем другие резервуары. Большая часть углекислоты, поступающей из атмосферы в поверхностные слои морской воды, взаимодействует с водой с образованием угольной кислоты и продуктов ее диссоциации. Таким образом, в океане постоянно существует карбонатная система - сумма всех неорганических растворенных соединений углерода (углекислый газ СО 2 , угольная кислота Н 2 СО 3 и продукты ее диссоциации).

Все эти соединения связаны между собой и могут превращаться друг в друга в процессе химических реакций при изменении условий окружающей среды. Например, в случае увеличения кислотности воды (при низких значениях рН) молекулы угольной кислоты распадаются на воду Н 2 О и углекислый газ СО 2 , при этом последний может удаляться из океана в атмосферу. Щелочные условия, наоборот, способствуют образованию карбонат -ионов (СОз 2-), труднорастворимых карбонатов кальция (СаСО 3) и магния (MgCO 3), которые в виде осадка опускаются на дно и на какое-то время выводят углерод из круговорота в океане.

Как видно из рис. 10.5, содержащийся в атмосфере или гидросфере углерод (в виде углекислого газа СО 2) в процессе фотосинтеза включается в органическое вещество растений и далее по пищевой цепи попадает в организмы животных и микроорганизмы. Обратный процесс перехода углерода из органической формы в минеральную происходит во время дыхания всех организмов животных, и растений (окисление органического вещества до углекислого газа (СО 2) и воды (Н 2 О)). Процесс высвобождения углекислого газа из органического вещества происходит не сразу, а постепенно, частями на каждом трофическом уровне. В почве очень часто биогеохимический цикл углерода замедляется, так как органические вещества минерализуются не полностью, а трансформируются в органические комплексы - гумус.

Особенность функционирования наземных экосистем - значительное и относительно долговременное накопление органической формы углерода в биомассе растений и животных, а также в гумусе. Таким образом, биомасса наземных экосистем также может рассматриваться как значительный запас углерода в биосфере.

Рис. 10.5. Схема круговорота углерода (серые прямоугольники - резервные фонды углерода)

Океаническая ветвь биогеохимического цикла углерода имеет свои особенности, которые, учитывая значительный объем содержащегося в воде углерода, определяют важную роль Мирового океана в круговороте данного элемента. В водной среде в отличие от наземных экосистем основными фотосинтезирующими организмами являются одноклеточные микроскопические водоросли, парящие в водной толще (фитопланктон).

Жизнедеятельность организмов фитопланктона достаточно активна и сопровождается как накоплением органического углерода в виде биомассы, так и выделением растворенного органического углерода. Животные и бактерии потребляют эти органические формы углерода.

Особенностью функционирования водной экосистемы является быстрый переход органических форм углерода по пищевой цепи от одних организмов к другим. В отличие от наземных экосистем в океане не образуются значительные запасы органического углерода в биомассе живых организмов. Большая часть органического углерода в гидросфере вновь потребляется и в конце концов окисляется до минеральной формы - углекислого газа (СО 2). Другая часть мертвого органического вещества (детрит) под действием силы тяжести оседает в глубокие слои водной толщи и откладывается на дне, где может долгое время сохраняться в виде органических осадков.

Небольшая часть органического вещества и содержащегося в нем углерода, по терминологии В.И. Вернадского, ускользает от круговорота и «уходит в геологию» - в отложения в виде торфа, угля, нефти и известняка в водных экосистемах.

Современный баланс углекислого газа в атмосфере представлен в табл. 10.1.

Таблица 10.1

Ежегодный баланс СО 2 в атмосфере

Источник: Тарко А.М. Устойчивость биосферных процессов и принципов Ле Шателье // Доклады РАН. 1995. Т. 343. № 3. С. 123.

Таким образом, около из 6,41 млрд. т углекислого газа, ежегодно выбрасываемых промышленностью, 3,3 млрд. т, т.е. более 50% остается и атмосфере. За последние 150 лет это уже привело к увеличению содержания углекислоты в атмосфере более чем на 25% и вызвало стимуляцию парникового эффекта. В свою очередь изменение климатического режима Земли может привести и уже приводит к глобальному изменению климата.

В целом в биосфере в постоянном круговороте находится около 0,2% мобильного запаса углерода. Углерод биомассы обновляется за 12 лет, атмосферы - за 8 лет, что подтверждает высочайшую сбалансированность биогеохимического цикла углерода.

Контрольные вопросы и задания.

1. Что называется биогеохимическими циклами и как они связаны с экосистемами?

2. Охарактеризуйте резервный и обменный фонд в круговороте химических элементов.

3. Укажите блоки экосистем, через которые проходят биогеохимические циклы элементов.

4. В круговороте каких биогенных элементов ключевая роль принадлежит микроорганизмам?

5. Для каких элементов атмосфера является резервным фондом?


ЭКОЛОГИЯ ПОПУЛЯЦИЙ

Каждый биологический вид, существующий в природе, - это сложный комплекс внутривидовых групп организмов с однотипными чертами строения, физиологией и образом жизни. Такими внутривидовыми группами организмов являются популяции.

Популяция - группа организмов одного вида, способная поддерживать свою численность длительное время, занимающая определенное пространство и функционирующая как часть биотического сообщества экосистемы

Биотическое сообщество представляет собой совокупность популяций организмов разных видов, функционирующих как целостная система в определенном физико-географическом пространстве среды обитания.

Приспособительные возможности у популяции значительно выше, чем у слагающих ее индивидов. Популяция как биологическая единица обладает определенной структурой и функциями.

Популяция обладает биологическими свойствами , присущими как популяции в целом, так и составляющим ее организмам, и групповыми свойствами , проявляющимися только в целой группе. К биологическим свойствам популяции относятся, в частности, рост и участие в круговороте веществ. В отличие от биологических, групповые свойства: рождаемость, смертность, возрастная структура, распределение в пространстве, генетическая приспособленность и репродуктивная непрерывность (т.е. вероятность оставления потомков на протяжении длительного периода времени) - могут характеризовать только популяцию в целом.

Ниже представлены основные показатели популяции.

Плотность популяции - это численность популяции, отнесенная к единице пространства. Ее обычно измеряют и выражают числом организмов (численность популяции) или суммарной биомассой организмов (биомассой популяции) на единицу площади или объема, например, 500 деревьев на 1 га, 5 млн. микроводорослей на 1 м 3 воды или 200 кг рыбы на 1га поверхности водоема.

Иногда бывает важно различить удельную , или экологическую плотность (численность или биомассу на единицу обитаемого пространства, т. е. фактически доступного для организмов конкретной популяции) и среднюю плотность (величину популяции, отнесенную к единице пространства в географических пределах обитания популяции). Например, средняя плотность лесных лягушек - это их численность, отнесенная к площади лесного массива. Однако эти животные обитают только в заболоченных участках леса, площади которых учитываются при расчете удельной плотности популяции.

Плотность популяции не является постоянной величиной - она изменяется с течением времени в зависимости от условий обитания, сезона года и т. д. Распределение организмов в пространстве, занимаемом популяцией, может быть случайным, равномерным и групповым. Чаще всего в природе встречаются различного рода скопления организмов одного вида (групповое распределение: семейные группы и стаи у животных, групповые заросли у растений).

Наиболее полное представление о плотности популяции дает комплексное использование показателей: численность особей хорошо характеризует их среднюю удаленность друг от друга; биомасса - концентрацию живого вещества; калорийность - количество связанной в организмах энергии. Как правило, плотность популяции растений выше, чем плотность популяции травоядных животных на той же территории. Чем крупнее организмы, тем больше их биомасса.

Плотность - одно из важнейших свойств популяции. От плотности популяции зависят дыхание, питание, размножение и многие другие функции отдельных организмов популяции. Чрезмерная плотность популяции ухудшает условия ее существования, снижая обеспеченность организмов пищей, водой, жизненным пространством и т. д. Отрицательно влияет на существование популяции и недостаточная ее плотность, которая затрудняет выбор особей противоположного пола, защиту популяции от хищников и т.д. (см. подробнее о массовых и групповых эффектах в лекции 6).

Существует ряд механизмов поддержания плотности популяций на нужном уровне. Главный из них - саморегуляция численности популяции по принципу обратной связи с количество и ограниченных жизненных ресурсов, в частности, пищи. Так, когда пищи становится меньше, рост особей замедляется, смертность возрастает, половая зрелость (т. е. способность к размножению) наступает позже, и в результате численность популяции и ее плотность снижается. Улучшение условий существования сопровождается я изменениями противоположного характера, и плотность популяции возрастает до определенного предела. Численность популяции может колебаться вследствие миграции, смены поколений, появления новых особей (благодаря рождению и вселению из других популяций) или в результате гибели. Изучение динамики численности популяции весьма важно для предсказания вспышек численности организмов вредителей или промысловых животных.

Численность популяции определяется в основном двумя противоположными явлениями - рождаемостью и смертностью.

Рождаемость - это способность популяции к увеличению численности. Она характеризует появление на свет новых организмов в процессе: рождения у животных, прорастания семян у растений, образования новых клеток в результате деления у микроорганизмов. Общее число новых молодых особей (), появившихся в популяции за единицу времени (Δt), называют абсолютной (общей) рождаемостью . Для сравнения рождаемости разных популяций используется понятие удельной рождаемости (b), выраженной числом новых особей на одну особь в единицу времени:

Так, для популяций человека в качестве показателя удельной рождаемости используют количество новорожденных детей, родившихся за 1 год на 1 тыс. населения.

Максимальная (потенциальная) рождаемость - это теоретический максимум скорости появления новых особей в идеальных условиях (когда скорость размножения не снижается под действием лимитирующих экологических факторов). Максимальная рождаемость - величина постоянная для данной популяции. В реальных (природных) условиях существования популяции уровень рождаемости определяется различными факторам среды, которые ограничивают скорость появления новых особей. Поэтому для оценки динамики численности популяции используют понятие экологической (реализованной) рождаемости , представляющей увеличение числа особей в популяции в конкретных условиях среды обитания. Экологическая рождаемость - величина непостоянная и сильно варьирует в зависимости от плотности популяции и условий среды обитания.

Различие между максимальной и реализованной рождаемостью можно проиллюстрировать следующим примером. В опытах с мучным хрущаком эти жучки отложили 12 000 яиц (максимальная рождаемость), из которых вылупились только 773 личинки (или 6%)- величина реализованной рождаемости. В общем, для биологических видов, которым не свойственна забота о потомстве (например, многие насекомые, рыбы, земноводные), характерна высокая потенциальная рождаемость и низкая реализованная рождаемость.

Смертность - количество особей в популяции, погибших за определенный период. Понятие смертности противоположно понятию рождаемости. Общее число погибших особей (ΔN) за единицу времени (Δt) называется абсолютной (общей) смертностью. Смертность можно выразить числом особей погибших в единицу времени в расчете на одну особь - удельная смертность (d):

Экологическая (реализованная) смертность - число погибших особей в конкретных природных условиях . Как и экологическая рождаемость, она не постоянна и зависит or особенностей окружающей среды. Теоретическая минимальная смертность - величина постоянная, характеризующая гибель особей (от старости) в идеальных условиях среды (т. е. в отсутствие лимитирующего влияния факторов среды обитания). В конкретных условиях скорость убывания численности популяции определяется гибелью от хищников, полезней и старости.

Часто при описании динамики численности популяции используют понятие выживаемости, т. е. величины, обратной смертности. Если смертность d , то величина выживаемости 1 - d .

Как и рождаемость, смертность и. соответственно, выживаемость у многих организмов в значительной степени варьируют с возрастом. В связи с этим большое значение имеет определение удельной смертности для разных возрастных групп, поскольку это позволяет экологам выяснить механизмы, определяющие общую смертность в популяции. Продолжительность жизни особей популяции можно оценить, используя кривые выживания (рис. 11.1) Откладывая по oси абсцисс возраст особи как процент от общей продолжительности жизни, а по оси ординат - число особей доживших до конкретного возраста, можно сравнить кривые выживания для видов, продолжительность жизни особей которых значительно различается.

Рис 11.1. Типы кривых выживания; 1 - дрозофила; 2 - человек; 3 - пресноводная гидра; 4 - устрица.

Кривые выживания подразделяются на три общих типа (см. риc. 11.1)

Первый тип (выпуклые кривые 1 и 2) характерен для таких видов в популяции которых наибольшая смертность приходится на конец жизни, т. е. смертность почти до конца жизненного цикла остается низкой и резко повышается только у старых особей. Большинство особей одной популяции имеют примерно одинаковую продолжительность жизни, например, крупные животные.

Другой крайний вариант (сильновогнутая кривая 4) соответствует высокой смертности на ранних стадиях жизненного цикла и повышению выживаемости более взрослых стадий. Этот тип смертности свойственен большинству растений и животных. Максимальная скорость гибели характерна для личиночной фазы развития или в молодом возрасте у животных, а также у многих растений в стадии прорастания семян и всходов. При достижении взрослого состояния организмы становятся более устойчивыми к неблагоприятным воздействиям экологических факторов, и их смертность значительно снижается (и увеличивается выживаемость). Так, при развитии личиночных стадий рыб до половозрелого состояния взрослых особей, доживает, как правило, не более 1...2 % oт общего количества выметанных икринок. У насекомых до половозрелого состояния доживает еще меньше: oт 0,3 до 0,5% от общего количества отложенных яиц.

К промежуточному типу (линия 3) относятся кривые выживания для тех видов, у которых удельная выживаемость для каждой возрастной группы более или менее одинакова (пресноводная гидра). Вероятно, в природе почти не существует популяций, у которых выживаемость постоянна на протяжении всего жизненного цикла.

Форма кривой выживания связана со степенью заботы о потомстве и другими способами защиты молоди. Так, кривые выживания пчел и дроздов (которые заботятся о потомстве) значительно менее вогнуты, чем у кузнечиков и сардин (которые не заботятся о потомстве).

Возрастная структура популяции - это соотношение в популяции особей разного возраста.

Возрастной состав является важной характеристикой популяции, которая влияет как на рождаемость, так и на смертность. Большинство популяций в природе состоит из особей разного возраста и пола.

Упрощенно в популяции можно выделить три экологические возрастные группы:

предрепродуктивная - молодые особи, еще не достигшие половой зрелости, т. е. не способные участвовать в размножении;

репродуктивная - половозрелые особи, способные участво­вать в размножении;

пострепродуктивная - старые особи, утратившие способность участвовать в размножении.

Отношение этих возрастов к общей продолжительности жизни в популяции сильно варьирует у разных видов. На количественное соотношение разных возрастных групп в популяции влияют общая продолжительность жизни, время достижения половой зрелости, интенсивность размножения, смертность в разных возрастах. В свою очередь соотношение разных возрастных групп в популяции определяет ее способность к размножению в данный момент и показывает, чего можно ожидать в будущем. Изменение соотношения численности основных возрастных групп в популяциях графически изображается в виде возрастных пирамид (рис. 11.2). В быстрорастущей популяции значительную долю составляют молодые особи (рис. 11.2, а) популяции, численность которой не меняется со временем, возрастной состав более равномерный (рис. 11.2, б), а в популяции, численность которой снижается, будет увеличиваться доля старых особей (рис. 11.2, в).

Рис. 11.2 . Три типа возрастных пирамид, характеризующие популяции

с высокой (а ), умеренной (б ) и малой (в ) относительной численностью

молодых особей (в % от общей численности популяции):

1 - предрепродуктивная, 2 - репродуктивная, 3 - пострепродуктивная возрастная группа

Рост популяции и кривые роста . Если рождаемость в популяции превышает смертность, то наблюдается рост численности популяции.

Каждой популяции и каждому виду в целом свойствен биотический потенциал - максимальная теоретически возможная скорость роста (r ) популяции, представляющая собой разность между удельной рождаемостью (b ) и удельной смертностью (d ):

r = b-d.

Увеличение численности популяции может быть описано кривыми роста двух основных типов - J-образной кривой (экспоненциальный рост) и S-образной кривой (затухающий рост).

Экспоненциальный рост численности популяции характеризуется J-образной кривой роста и происходит когда пищевые пространственные и другие важные жизненные ресурсы популяции находятся в избытке, а смертность с возрастанием численности особей не увеличивается (рис. 11.3).

Уравнение J-образной кривой роста имеет вид

где N - численность популяции; t- время; r - константа скорости роста численности популяции, связанная с максимальной скоростью размножения особи данного вида (биотический потенциал).



Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.